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Abstract

In this paper we develop and apply a new empirical approach to estimating a widely

used class of models of demand for differentiated products. Our approach is applicable

to the often encountered situation where the researcher has data on a sample of markets

(i.e., the “many markets” setting). We first show that the existing identification and

estimation machinery made famous by Berry, Levinsohn, and Pakes (1995), which is

focused instead on the “many products” setting (i.e., a sample of products within a

market), fundamentally breaks down in the many markets setting due to the presence

of sampling variability in market shares and the presence of strategic dependence among

products within a market. We instead construct a new inversion strategy for demand,

which gives rise to a set of moment inequalities that partially identify the demand

parameters in a many markets environment. We also construct a profiling approach for

parameter inference with moment inequalities, which allows us to study models with a

large number of parameters (as typically required in demand applications) by focusing

attention on a function of the parameters that we term a “generalized profile”, such

as a demand elasticity. We use our approach to study UPC level demand on scanner

data from the Dominick’s Fine Foods database, and find that even for the baseline

logit model, demand elasticities nearly double when the sampling variability in shares

is taken into account.

1 Introduction

In this paper we develop and apply a theory for demand estimation for differentiated prod-

ucts when the fundamental source of sampling variability in the data is at the market level,

i.e., the researcher has data on demand from a sample of different markets (such as spatially

and/or temporally separated markets). Variation across different markets is the classic set-

ting used to identify and estimate demand for homogeneous products and underlies the
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standard textbook simultaneous equations supply and demand model. Beyond the text-

book example of homogenous goods, variation across markets is also widely found in data

from differentiated goods industries.1 However the empirical problem of estimating discrete

choice demand using variation in markets (which we shall call the “many markets” setting)

has not yet been systematically studied, which is an important void the present paper aims

to fill.

In contrast to our focus on the “many markets” case, the existing literature on estimation

of discrete choice demand for differentiated markets has focused instead on the “many

products” case, i.e., a sample of products within a market. In series of papers, Berry

(1994), Berry, Levinsohn, and Pakes (1995), and Berry, Linton, and Pakes (2004) (we shall

reference these papers collectively as BLP and the last paper specifically as BLintonP)

appeal to the economics of a single “large” market to derive a theory of inference when

the asymptotics is in the number of products within this market. That is, they focus on a

setting where the fundamental source of sampling variability in the data is at the product

level, i.e., a cross section of products within a market. In contrast, we will focus on the

setting where the sampling variability is at the market level, i.e., a cross section of markets.

As we show, there are essential differences between these two settings that require them

to be studied differently, and as a consequence the application of the BLP framework can

produce seriously misleading inferences when applied to data from many markets. Our

approach on the other hand is focused on addressing the unique challenges of estimating

demand in the many markets case.

There are two critical differences between the “many markets” settings we consider and

the “many products” setting of BLP that necessitate a new empirical strategy for demand

inference. These differences motivate the key contributions we make in this paper. The first

difference is that in the many markets setting, the number of consumers within a market is

a fixed attribute of each market that does not change with the number of markets. Thus the

empirical market shares in the data are subject to sampling variability which does not vanish

in the limit (where the limit is taken with respect to the number of markets). This stands in

contrast to the “many products” environment that BLP study where they can assume (not

without loss) that the number of consumers grows at a sufficiently rapidly rate with the

number of products in the market, and thus sampling variability vanishes at a controlled

rate in the limit (where the limit is instead taken with respect to the number of products).

By controlling the sampling variability in market shares this way, BLP are able to invert

market shares so that the demand relationship is linear in each product’s unobservable and

1Variation in demand data across markets arises in the studies of cereal industry (e.g. Nevo (2000), Nevo
(2001)), hospital demand (e.g. Capps, Dranove, and Satterthwaite (2003), Ho (2007)), yellow pages demand
(e.g. Rysman (2004)), yogurt industry (e.g. Villas-Boas (2007)), newspaper industry (e.g. Fan (2008)),
health insurance market(e.g. Lustig (2008)), airline market(e.g. Berry and Jia (2010)), etc.
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thus exploit a conditional moment restriction between a product’s unobservable and a vector

of instruments (mean independence of each product’s unobservable with the instruments) as

the basis for identification and estimation. In contrast, we show that in the “many markets”

environment, this same inversion strategy causes the conditional mean restriction to lose

all of its identifying content due to the lack of control on the sampling variability of market

shares. Our first contribution is to develop a new inversion strategy for identifying the

demand parameters when market shares are subject to sampling variability. Our inversion

exploits a new monotonicity property of discrete choice demand that we will establish. We

combine this property with the sampling structure underlying empirical shares to give rise to

an inversion of empirical shares that allows us to translate the conditional mean restriction

into an informative system of conditional moment inequalities.

An important message from our identification analysis is that it is critical to not ignore

the sampling variability in shares when working with a cross section of markets. In many

empirical settings, such as airlines (see e.g., Berry, Carnall, and Spiller (1996)), television

(see e.g., Goolsbee and Petrin (2004)), and scanner data (Chintagunta, Dube, and Goh

(2005)), sampling error in shares is a first order concern since the number of consumers

sampled in each market relative to the number of products can be small. This can manifest

itself in a particularly problematic fashion for demand estimation - the data can exhibit zero

market shares for some products. Standard discrete choice models always predicts positive

market level demand, and hence the mere observation of a zero share in the data rejects

the model. However a zero share in the data can be seen as an entirely natural outcome

when sampling variability is taken into account and the underlying choice probabilities are

small - zeroes are merely the outcome of sampling error (i.e., not enough consumer draws).

We show that the empirical strategy that systematically leaves these products out of the

estimation (a common strategy in practice, seemingly justified by associating these products

with the “outside good”), causes a selection problem that biases elasticities in the direction

of being too inelastic. Effectively, selection of products that have only have positive share

creates a source of a positive correlation between price and the product unobservable. We

present examples where the selection problem alone can lead to seriously biased, whereas our

identification strategy provides informative and valid bounds on these demand parameters.

A second fundamental difference between the “many markets” and the “many products”

setting is that with many markets, strategic interaction among the fixed and relatively

small number of products within a market will generally cause the attributes of products

within the market to be dependent in a non-standard way. In the many product setting

BLP assume the true underlying data generating process is such that the products have

unobservable attributes that are independent of one another. Instead we can allow for

arbitrary strategic interaction and dependencies among product unobservables within a
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market by exploiting thevariation acrossmarkets. In particular we show that our product

level conditional moment inequalities can be aggregated without information loss to the

market level. Then using the fact that the sampling of markets can be assumed to satisfy

independence or weak dependence in the standard sense, we can appeal to the literature on

inference with moment inequalities to conduct inference with these inequalities.

Our third major contribution in the paper is our construction of a generalized profiling

approach to inference with moment inequalities that is applicable to the moment inequalities

literature more generally, and particularly to our demand estimation context. The existing

inference method for our problem (e.g. Andrews and Shi (2009)) requires exhaustive grid

search over the parameter space. The computational cost is particularly high for demand

studies because at least a moderate number of control variables are needed to ensure va-

lidity of the instrument for price. Generalized profiling of moment inequalities allows us

to circumvent this computational burden by performing inference directly on a generalize

profile of the parameters, i.e., a function of the parameters that capture the policy relevant

objects of interest, such as elasticity and welfare. The model parameters themselves are

treated as nuisance parameters and profiled out when conducting the inference. The idea of

profiling out nuisance parameters has received little attention in the partial-identification

literature. Romano and Shaikh (2008) are to our knowledge the only one to suggest apply-

ing profiling to partially identified models. They also show the validity of a subsampling

procedure under high-level conditions, but the high-level conditions are not straightforward

to verify. We fill in this void by showing the uniform validity of subsampling under low

level conditions. More importantly, we design a bootstrap alternative to subsampling that

is also uniformly valid and easy to implement.

We apply our inference strategy to the Dominick’s Fine Foods (DFF) data, which is

publicly available and has been one of the more heavily studied sources of data for consumer

demand studies. An important feature of the data that has proven to be both a strength

and weakness for empirical work is its high frequency, both in the product dimension and

time dimension. Products are defined in the data at the bar-code or “UPC” level, which

gives rise to a massively large number of available products even within narrowly defined

product categories. Furthermore, the sales information is available at the weekly level,

which is the time horizon over which the grocery store chain makes its pricing and promotion

decision. These two aspects of the data combine to give rise to a phenomenon that draws

particular attention to the problem of sampling variability shares and has posed a puzzle

for demand estimation: many observations exhibit in the data zero sales. Because the

standard BLP approach adapted from the “many products” environment cannot explain

zero sales in the data, this has required researchers to either ignore UPC’s with zero demand

(and put into the definition of the outside good and thereby introduce a selection problem
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as we explained above), or ignore UPC’s altogether and instead aggregating UPC’s into

a conglomerate product (such as a brand) that is not consistent with the choice problem

consumers actually face. Applying our inference strategy to the data, we find that demand

becomes almost twice as elastic as compared to estimation demand with these misspecified

alternatives.

2 Model

A market t consists of a set of Jt + 1 differentiated products. The product labeled j = 0 in

each market t is referred to as the “outside option”, and the goods labeled j = 1, . . . , Jt are

the “inside goods”. The inside goods are characterized by prices pt ∈ RJt+ and observable

demand shifters xt ∈ X, where xt = (x1t, . . . , xJtt) and xit ∈ RK for i = 1, . . . , Jt is a

vector of product attributes that are observable to the econometrician. Finally, let ξt =

(ξ1t, . . . , ξJtt) ∈ RJt denote a vector of demand shocks, which are typically interpreted as

unobservable (to the econometrician) product attributes of the inside goods. Each market

t also consists of a certain number of consumers nt. In some empirical settings, nt is the

population size of a market, the number of consumers who enter a store, the sample size of

the sample from a survey, or other possibilities depending on how demand information is

gathered.

The demand of each consumer i = 1, . . . , nt in market t is determined by an underlying

random utility model. For simplicity, we use the specification of random utility employed

by Berry (1994), but the ideas of this paper extend in a straightforward way to other

specifications. The utility to consumer i for product j = 0, . . . , Jt in market t is

uijt = δjt + νijt, (2.1)

where

1. δjt = α0pjt + β0xjt + ξjt is the mean utility of product j > 0 and in market t, and

mean utility of the outside good j = 0 is normalized to δ0t = 0. Let δt = (δ1t, . . . , δJtt)

denote the vector of mean utilities of the “inside” goods j > 0.

2. The vector νit = (νi0t, . . . , νiJtt) ∼ F (· | xt;λ0) is the random vector of tastes in mar-

ket t. We will assume for simplicity that the random vector νit has full support on

RJt+1, which is a property exhibited by many random utility models. For example, if

one component of each random utility term νijt is an idiosyncratic preference shock

with full support (as in the mixed logit model or probit models), then full support of

νit holds. The only role the the full support assumption plays for us is a computa-

tional convenience and is thus a useful assumption to maintain from that perspective.
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However our general theory does not depend upon full support in any fundamental

way and we can proceed instead under the weaker connected substitutes condition of

Berry, Gandhi, and Haile (2011).

3. The vector θ0 = (α0, β0, λ0) denotes the true value of the parameters, which lie in a

finite dimensional parameter space θ0 ∈ Θ.

The random utility model yields a system of choice probabilities

πjt = σj(δt, xt;λ0) j = 0, 1, . . . , Jt, (2.2)

and πjt is the choice probability that a randomly sampled consumer form the popula-

tion F (· | xt;λ0) would optimally choose good j from the market t choice set. Let πt =

(π0t, π1t, . . . , πJtt) denote the vector of choice probabilities predicted by the discrete choice

model.

The econometrician observes the aggregate demand of the nt consumers in the market,

which can be represented as a market share sjt for j = 0, 1, . . . , Jt where

sjt =

∑nt
i=1 dijt
nt

(2.3)

and

dijt =

1 ith consumer in market tchooses product j

0 otherwise.

The consumers purchasing product 0 is by definition the consumers not purchasing any of

the inside products j = 1, ..., Jt. Given that all consumers in the market are observationally

identical (i.e., there are no individual specific covariates to distinguish different consumers in

the sample), each observed consumer choice in the market has identical choice probabilities

πt. Thus the vector of empirical shares st = (s0t, s1t, . . . , sJtt) is simply the sample analogue

estimator of the market choice probabilities πt. In particular, conditional on πt and nt, the

vector st is a multinomial random variable MN(nt, πt) divided by nt.

To understand the nature of the econometric problem that the model generates, assume

for the sake of argument that instead of observing market shares st, the econometrician

actually observes the underlying vector of choice probabilities πt corresponding to each

market. Then under general conditions (see Berry, Gandhi, and Haile (2011)) the demand

system (2.2) can be inverted to recover the true vector of mean utilities utilities δt, which

gives us the inverse relationship.

σ−1
j (πt, xt;λ0) = α0pjt + β0xjt + ξit j = 1, . . . , Jt,∀t. (2.4)

6



We will also assume conditional mean restriction

E[ξjt | zjt, Jt] = 0 ∀j = 1, . . . , Jt ∀t. (2.5)

where zjt is a vector of instruments. Observe that the conditional mean restriction (2.5) is

defined at the product/market level, i.e., it is a moment restriction in the underlying popu-

lation of possible product/market realizations. We can now appreciate the two fundamental

challenges for conducting inference of the parameters in the demand relationship (2.4) on

the basis of the mean restriction (2.5).

The Identification Problem

The first fundamental problem we must address is that the identifying content of the con-

ditional mean restriction 7 completely breaks down when we respect the fact that the

underlying choice probabilities πt are not actually observed in the data bur rather only the

empirical market shares st as defined by (2.3). Observe that the empirical share st is sim-

ply the sample analogue estimator of the market choice probabilities πt. However, although

st is an unbiased estimator for πt, plugging the unbiased estimator into the inverse share

function

σ−1
j (st, xt, λ0), (2.6)

does not produce an unbiased estimator of the true mean utilities δjt = σ−1 (πt, xt, λ0)

because the inverse function σ−1 is nonlinear. Indeed the problem in our context is even

worse - the inverse σ−1 does not even exist when one or more products have a realized share

of zero (see Berry, Gandhi, and Haile (2011) for further discussion). Thus the expectation

E[σ−1
j (st, xt, λ0) | nt, πt, xt] does not even exist since there is positive probability that st

will be such that product j sampled share of zero, which causes a breakdown for identifi-

cation even leaving aside inference. To see why, although we have the conditional moment

restriction that

E
[
σ−1
j (πt, xt;λ0) + α0pjt − β0xjt | zjt, Jt

]
= 0 j = 1, . . . , Jt,, ∀t

the moment E
[
σ−1
j (st, xt;λ0) + α0pjt − β0xjt | zjt, Jt

]
will generally not even exist and thus

the conditional moment restriction (2.5) will no longer have identifying power to discrim-

inate between any model parameters as all values of θ give rise to the same undefined

expectation.

The approach of Berry (1994), BLP, and BLintonP avoided this issue by, once again,

appealing to the economics of “large” markets: as the number of products J in the cross

section grow large, if the number of consumers N in the markets grows at a sufficiently faster
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rate, then in the limit the error in st as a measure of πt can be ignored. This asymptotic

experiment cannot be performed in our setting since the number of consumers nt in each

market t is a fixed attribute of each market and does not change in the limit as the number

of markets as opposed to products grows large. This problem can be seen manifest in many

data sets involving a large number of markets relative to products, which can exhibit a large

fraction zero market shares for products in the data and directly rejects the assumption that

st = πt. Thus an even more fundamental problem we face is to construct moment restriction

that have identifying content in the presence of sampling error in st.

The Inference Problem

The product/market level (j, t) observations are not independent realizations. In particular,

the data generating process is such that only the exogenous attributes of products across

different markets {(zjt, ξjt)}j∈Jt and
{

(zjt′ , ξjt′ )
}
j∈Jt′

are independent or weakly dependent.

However the attributes of products within a market {(zjt, ξjt)}j∈Jt can be dependent in

complicated ways due to the strategic interaction among firms in their “product location”

decisions. BLintonP sidestep this problem by appealing to the economics of “large” markets

- that is they consider a large cross section of J products in a single market, and assume that

the unobservable attributes {ξjt}j∈Jt are independent. Their asymptotic theory appeals to

this independence and a few high level conditions on the sample averages of the observables.

Though arguments may exist to justify the assumption of independent unobservables in a

large J context, they are likely to be much less convincing for markets with a small J . In

a small market with relatively few products, the firms are inevitably strategically linked

in dimensions both observable and unobservable to the econometrician. One second key

problem is thus to allow for general stochastic dependence in the product locations of firms

within a market and only maintain standard assumptions on the way markets rather than

products are sampled.

3 Identification using Moment Inequalities

3.1 Constructing Product Level Moment Inequalities

First we propose a new moment restriction at the product/market level that restores

the identifying information about the demand parameters contained in the conditional

mean restriction (2.5) to a setting where there exists sampling error in the shares st.

Our strategy is based on first recognizing the existence of two new inverse mappings
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δljt (λ) := δlj (st, nt, xt, zt, Jt;λ) and δujt (λ) := δuj (st, nt, xt, zt, Jt;λ) that satisfy

E
[
δljt (λ0) |nt, πt, xt, zt, Jt

]
≤ δjt ≤ E

[
δujt (λ0) |nt, πt, xt, zt, Jt

]
j = 1, . . . , Jt, ∀t, (3.1)

where the expectations in both cases are taken with respect to the sampling variability in

st | πt, xt, nt, zt, Jt ∼ MN(nt, πt)/n. Thus, these mappings provide unbiased bounds for

the true mean utility δjt of a product in a market at the true parameter λ0 underlying the

distribution of the random utility terms νijt.

To motivate these mappings, recall that the worst identification problem caused by

sampling variability in st is the non-existence of the inverse σ−1 at the boundaries of the

simplex. Our first step will thus be to transform shares so they move strictly to the interior

of the simplex. We do so using a natural transformation: Laplace’s rule of succession, which

takes the form

s̃t =
ntst + 1

nt + Jt + 1
.

The transformed estimator can be interpreted as the Bayesian posterior of πt under a

uniform prior on the Jt-dimensional unit simplex.2 Using s̃t in σ−1
j (·, xt;λ0) in place of

st, solves the complete loss of identification issue. However, because the nonlinearity is-

sue still remains causing E
[
σ−1
j (s̃t, xt;λ0) | nt, πt, xt, zt, Jt

]
6= δjt, the moment condition

E
[
σ−1
j (s̃t, xt;λ0)− α0pjt − β0xjt | zjt, Jt

]
= 0 is misspecified.

Our second and more important step is to construct unbiased bounds for δjt by correcting

the bias caused by the nonlinearity of σ−1
j (·, xt, λ0). We exploit a monotonicity feature of

demand (that has thus far not been recognized nor applied to empirical work) that will

allow our correction to be adaptive (in a sense we will describe later) and thus to provide

a very practical solution. To define our unbiased bounds, let us first observe that for any

market t and for each product j = 1, ..., Jt, and for any λ, there exists a unique real valued

function ηj(nt, πt, xt, zt, Jt;λ) defined implicitly by the unique solution of η in :

E
[
σ−1
j (s̃t + η · ej , xt;λ) |nt, πt, xt, zt, Jt

]
= σ−1

j (πt, xt;λ), (3.2)

where ej is a vector whose jth element is one and all other elements are zeros, and the

expectation is taken with respect to the randomness in st. The following lemma ensures

the existence of a unique such implicit function.

Lemma 1. The function f(η) := E
[
σ−1
j (s̃t + η · ej , xt;λ) |nt, πt, xt, zt, Jt

]
is continuous

and strictly increasing in η. Furthermore, f(η) → −∞ as η → −1/(nt + Jt + 1) and

f (η)→∞ as η → 1/(nt + Jt + 1).

2See e.g. Chapter 9.4 of Good (1983).
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Proof. Recall that s̃t = ntst+1
nt+Jt+1 . Consider a given realization of s̃t and observe that

s̃t + ηej ≥ s̃t for η > 0. Thus using the fact σ−1 is an inverse isotone mapping as shown

by Theorem 1 in Berry, Gandhi, and Haile (2011), we have that σ−1
j (s̃t + η · ej , xt;λ) ≥

σ−1
j (s̃t, xt, λ). Strict monotoncity follows from the fact that σ−1 (s̃t + η · ej , xt;λ) 6= σ−1 (s̃t, xt, λ)

(because inverse isotone implies σ is invertible) and the fact the connected substitutes struc-

ture in Berry, Gandhi, and Haile (2011) (which is satisfied by our model) ensures that

σ−1
j (s̃t + η · ej , xt;λ) 6= σ−1

j (s̃t, xt;λ). Because this holds for all realizations of s̃t, strict

monotonicity also hold for the expectation taken with respect to realizations of s̃t. Observe

finally that as η → −1/(nt + Jt + 1) then the share of good j in the vector s̃t + η · ej is

approaching 0 for the realization s̃t = 0, and thus σ−1
j (s̃t + η · ej , xt;λ) must approach −∞

for the realization s̃t = 0 as a consequence of the full support assumption on νijt. How-

ever, because all other realizations of s̃t are such that σ−1
j (s̃t + η · ej , xt;λ) is decreasing as

established above, then the expectation taken with respect to realizations of s̃t approaches

−∞. A similar argument can be made for η → 1/(nt + Jt + 1) based on the recognition

that the share of good 0 in the share vector s̃t + η · ej is approaching zero at the realization

s̃jt = 1.

Now let ∆ε
Jt

= {πt = (π0t, π1t, ..., πJtt) ∈ [εt, 1]Jt :
∑Jt

j=0 πjt = 1} - that is we define a

lower bound εt, which is the lowest value that any choice probability πjt is allowed to take

in market t. Let

ηujt (λ) := ηuj (nt, xt, zt, Jt;λ) = sup
πt∈∆ε

Jt

ηj(nt, πt, xt, zt, Jt;λ). (3.3)

The lower bound of probability εt is needed to ensure a finite ηujt(λ) because σ−1(·, xt, λ) is

discontinuous at the boundary of the unit simplex ∆Jt . The same assumption is imposed in

BLintonP.3 In practice, one can set ε to machine zero or to choose it according to ones prior

on the minimum choice probability in the market to sustain the fixed costs of the product

being available in the market.

Furthermore, let

δuj,t (λ) := δuj (st, nt, xt, zt, Jt, λ) := σ−1
j

(
ntst + 1

nt + Jt + 1
+ ηuj,t (λ) · ej , xt;λ0

)
. (3.4)

As the proof of Lemma 1 pointed out, the function σ−1
j is monotone in the jth share, which

gives us the inequality

E[δujt (λ) |nt, πt, xt, zt, Jt] ≥ σ−1
j (πt, xt;λ), (3.5)

3Condition S of BLintonP.
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for all πt ∈ ∆ε
Jt

. Similarly, we let

ηljt (λ) := ηuj (nt, xt, zt, Jt;λ) = inf
πt∈∆ε

Jt

ηj(nt, πt, xt, zt, Jt;λ). (3.6)

and a valid lower bound can be defined as:

δljt (λ) := δlj (st, nt, xt, Jt, λ) := σ−1
j

(
ntst + 1

nt + Jt + 1
+ ηljt (λ) · ej , xt;λ

)
, (3.7)

which satisfies

E[δljt (λ) | nt, πt, xt, zt, Jt] ≤ σ−1
j (πt, xt;λ). (3.8)

Now recall that δjt = σ−1
j (πt, xt;λ0). Taking conditional expectation given (zjt, Jt) on both

sides of (3.5) and (3.8), we have

E[δujt (λ0) |zjt, Jt] ≥ E[δjt|zjt, Jt]

E[δljt (λ0) |zjt, Jt] ≤ E[δjt|zjt, Jt]

Hence the conditional mean restriction E [ξjt | zjt, Jt] = 0 implies the model can be ex-

pressed as a system of moment inequalities

E
[
δuj (st, nt, xt, Jt;λ0)− α0pjt − β0xjt | zjt, Jt

]
≥ 0 (3.9)

E
[
α0pjt + β0xjt − δlj(st, nt, xt, Jt;λ0) | zjt, Jt

]
≥ 0

for all j = 1, . . . , Jt. Letting wt = (st, nt, pt, xt, zt, Jt), we can express this system more

succinctly as

E [mj (wt; θ0) | zjt, Jt] ≥ 0 j = 1, . . . , Jt, t = 1, ..., T, (3.10)

where mj (wt; θ0) is a stacked vector of the two moments in (3.10).

The true parameter value θ0 is not necessarily point-identified by the conditional moment

inequality restrictions (3.10). Let Θ0 be the collection of all θ ∈ Θ that satisfy (3.10):

Θ0 = {θ ∈ Θ : E [mj (wt; θ) | zjt, Jt] ≥ 0 j = 1, . . . , Jt, t = 1, ..., T} . (3.11)

The set Θ0 usually is called the identified set of θ0.

Remark 1. Our bound construction may be thought of as bias correction for σ−1
j (s̃t, xt;λ).

Let µdj = δujt (λ) − σ−1
j (s̃t, xt;λ) and µuj = δljt (λ) − σ−1

j (s̃t, xt;λ). Then µdj is a downward

bias correction factor in the sense that after correcting by this factor, σ−1
j (s̃t, xt;λ) no
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longer has downward bias:

E[σ−1
j (s̃t, xt;λ) + µdj |nt, πt, xt, zt, Jt] ≥ δjt. (3.12)

Similarly, µuj is an upward bias correction factor in the sense that after correcting by this

factor σ−1
j (s̃t, xt;λ) no longer has upward bias:

E[σ−1
j (s̃t, xt;λ) + µuj |nt, πt, xt, zt, Jt] ≤ δjt. (3.13)

Of course it is not possible to correct both the upward bias and the downward bias by one

factor because πt is unknown. However, the two factors together allow us to construct valid

bounds on δjt.

Our bias correction factors are adaptive in the sense that they change with πt. They

are larger (in absolute value) when noise in s̃t affects the expectation of σ−1
j (s̃t, xt;λ) more,

and vice versa. The adaptiveness comes from the fact that our correction (η) enters in

the same way as the noise (s̃t − πt). Because of the way it enters, when the noise affects

the expectation more, the adjustment η also affect the expectation more making µuj more

negative and µdj more positive, and vice versa.

To fully appreciate the adaptive nature of bound construction, compare our approach

to a naive non-adaptive way of bias correction:

µdj,naive = sup
πt∈∆ε

Jt

{E[σ−1
j (πt, xt;λ)− σ−1

j (s̃t, xt;λ) |nt, πt, xt, zt, Jt]}

µuj,naive = inf
πt∈∆ε

Jt

{E[σ−1
j (πt, xt;λ)− σ−1

j (s̃t, xt;λ) |nt, πt, xt, zt, Jt]}. (3.14)

These naive bias correction factors do not change with πt and they typically are large

because the bias in σ−1
j (s̃t, xt;λ) is large for πt close to the boundary of ∆ε

Jt
. The large bias

correction is applied indiscriminately to all σ−1
j (s̃t, xt;λ) even if s̃t shows strong evidence

that πt is far from the boundary. Applying such bounds to inference results in uninformative

on the parameters.
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3.1.1 Example: Logit Demand

For each j and t, ηujt can be computed by solving the following constraint optimization

problem:

max
πt∈∆ε

Jt
,η∈[−1/(nt+Jt+1),1/(nt+Jt+1)]

η

s.t. E

[
σ−1
j

(
ntst + 1

nt + Jt + 1
+ η · ej , xt;λ0

)
|nt, πt, xt, zt, Jt

]
= σ−1

j (πt, xt;λ0) , (3.15)

where ntst|nt, πt, xt, zt, Jt ∼ MN(nt, πt). Similarly, ηljt can be computed by solving the

same optimization problem but with max replaced by min.

In the case of simple logit model: σ−1
j (πt, xt, λ0) = log(πjt/π0t), where π0t = 1 −∑Jt

j=1 πjt. Then, the constraint in the above problem is simplified to

E

[
log

(
ntsjt + 1 + (nt + Jt + 1)η

nts0t + 1− (nt + Jt + 1)η

)
|πt, nt

]
= log

(
πjt
π0t

)
, (3.16)

where nt(sjt, s0t, 1 − sjt − s0t)|nt, πt ∼ MN(nt, (πjt, π0t, 1 − πjt − π0t)). This is a major

simplification numerically because (1) the constraint in the above optimization problem

only depends on the three dimensional parameter (πjt, π0t, η) regardless of Jt and thus the

dimension of the optimization problem does not increase with Jt; and (2) ηujt = −ηljt because

πjt and π0t appear symmetrically in the equation and thus there is no need to solve both

the max and the min problems. The numerical simplicity of the simple logit model easily

extends to nested logit models.

3.2 Aggregating Moment Inequalities to the Market Level without Infor-

mation Loss

In Section 3.1, it is shown that the aggregate demand model can be written as

E [mj (wt; θ0) | zjt, Jt] ≥ 0 j = 1, . . . , Jt, t = 1, ..., T. (3.17)

The model (3.17) appears almost the same as the conditional moment inequality model

discussed extensively in, e.g., Andrews and Shi (2009) and Chernozhukov, Lee, and Rosen

(2008). However one subtle difference remains. The existing methods of inference are

designed for generic problems in which independence, or at least a special form of weak

dependence (e.g. mixing) is assumed. Such assumptions are not readily satisfied in the

aggregate demand model due to two reasons. First, the market level wt enters the mo-

ment function mj(wt, θ0). Second, there is strategic interaction between firms in a market,
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inducing {xjt, zjt, pjt} to be correlated across j for the same t. 4

Instead of treating each (jt) as an observation, we propose to aggregate the moments up

to the market level and use the market level variation. Assuming that there is no strategic

interaction between markets and consumers do not put products from different markets into

one choice set, then the market level data should satisfy either the independence or weak

dependence in a conventional sense.

The aggregation needs to be done properly to preserve all the identification information

there is in (3.17) under acceptable assumptions on the data generating process. The first

step is to transform (3.17) into moments not conditioning on product level variables –

moments that can be aggregated. Let g(zjt) be a real-valued function that lies in the

collection G . The collections are collections of indicator functions:

G = {1(z ∈ C) : C ∈ C}, (3.18)

where C is the collection of subsets of Z. The following Lemma shows the equivalent form

of (3.17). The proof is the same as that of Lemma 3 in Andrews and Shi (2009) and is

omitted.

Lemma 2. Suppose that C ∪{∅} is a semi-ring of subsets of Z. Also suppose that Z can be

written as the union of countable disjoint sets in C and the sigma field generated by C ∪ {∅}
equals B(Z) – the Borel sigma field on Z ⊆ Rdz .5

Then, (3.17) holds if and only if

E[mj(wt, θ0)g(zjt)|Jt] ≥ 0 j = 1, ..., Jt, t = 1, ..., T, ∀g ∈ G. (3.19)

The second step is to aggregate up the moments in (3.19) to market level:

E

 Jt∑
j=1

mj(wt, θ0)g(zjt)

∣∣∣∣∣∣ Jt
 ≥ 0, t = 1, ..., T, ∀g ∈ G. (3.20)

The aggregated moment condition contains exactly the same information as (3.19) if prod-

4The dependence of mj(wt, θ0) on other products’ characteristics cannot be captured by a market level
fixed effect. It is not helpful to stack up the mj : j = 1, ..., Jt and treat the model as a market level model
with a multi-dimensional moment condition either because Jt varies across markets.

The sample {xjt, zjt, pjt, sjt} can be consider to be a cluster sample with each market being a cluster.
Unfortunately, empirical process theory for cluster samples is not readily available but is needed for the
asymptotic justification of our inference procedure.

5A semi-ring, R, of subsets of a universal set Z is defined by three properties: (i) ∅ ∈ R, (ii) A,B ∈
R⇒A ∩ B ∈ R and (iii) if A ⊂ B and A,B ∈ R, then there exists disjoint sets C1, ..., CN ∈ R such that
B − A = ∪Ni=1Ci. An example of a C that satisfies the assumptions in Lemma 2 when Z is discrete is
Cd = {{z} : z ∈ Z}. An example when Z = [0, 1] is Cc = {[a, b) : a, b ∈ [0, 1]} ∪ {{b}}.
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ucts within a market are symmetric. Formally, let Fw,z|J(w1t, ..., wJtt, z1t, ..., zJtt|Jt) be the

cumulative distribution function of (wt, zt) given Jt. Symmetry means for any permutation

{τ1, ..., τJt} of {1, ..., Jt},

Fw,z|J(wτ1t, ..., wτJt t, zτ1 , ..., zτJt t|Jt) = Fw,z|J(w1t, ..., wJtt, z1t, ..., zJtt|Jt), and

F (vi0t, viτ1t, ..., viτJt t|xiτ1t, ..., xiτJt t, λ) = F (vi0t, vi1t, ..., viJtt|xi1t, ..., xiJtt, λ) ∀λ. (3.21)

The implication of symmetry in the present context is that the econometrician is agnostic

about how products from different markets are linked to each other. Under the symmetry

condition, we have for all j
′

= 1, 2, ..., Jt,

E

 Jt∑
j=1

mj(wt, θ0)g(zjt)

∣∣∣∣∣∣ Jt
 = JtE

[
mj′ (wt, θ0)g(zj′ t)

∣∣∣ Jt] . (3.22)

It is then immediate that the market level moment condition (3.20) holds if and only if

(3.19) does.

We assume that the number of products in a market is bounded by J̄ . Let CJ be a

semi-ring of subsets of {1, ..., J̄} and GJ = {gJ(y) = 1{y ∈ CJ} : CJ ∈ CJ}. Let

ρ(wt, θ, g, g
J) =

Jt∑
j=1

mj(wt, θ)g(zjt)g
J(Jt). (3.23)

Suppose that {1, ..., J̄} can be written as the union of countable disjoint sets in CJ and the

sigma field generated by CJ is the power set of {1, ..., J̄}. Then similar to Lemma 2, we can

show that

E[ρ(wt, θ0, g, g
J)] ≥ 0, ∀g ∈ G, gJ ∈ GJ (3.24)

if and only if (3.20) holds. Thus, we have aggregated up the individual product level

moments into market level without loss of information. The following lemma collects all

the assumptions and state the aggregation formally. The proof is omitted because its

supporting arguments are already given above.

Lemma 3. Suppose that (i) Jt ∈ {1, ..., J̄} for some J̄ < ∞, (ii) the symmetry condition

in (3.21) holds, (iii) C ∪ {∅} and CJ ∪ {∅} are semi-rings of subsets of Z and {1, ..., J̄}
respectively, (iv) Z and {1, ...., J̄} can be written as the union of countable disjoint sets in

C in {1, ..., J̄} respectively and (v) the sigma field generated by C and CJ are B(Z) and

2{1,...,J̄}, respectively. Then

Θ0 = {θ ∈ Θ : E[ρ(wt, θ, g, g
J)] ≥ 0, ∀g ∈ G, gJ ∈ GJ}.
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The next section takes the model in (3.24) as the starting point and develop a generalized

profiling method for the inference of any parameter that is identified through a (possibly

set valued) function of θ0.

4 Estimation and Inference

4.1 Inference Using Generalized Profiling

The model (3.24) is a moment inequality model with many moment conditions. One could

use the method developed in Andrews and Shi (2009) to construct a confidence set for θ0.

However, Andrews and Shi (2009)’s confidence set is constructed by inverting an Anderson-

Rubin test: CS = {T (θ) ≤ c(θ)} for some test statistic T (θ) and critical value c(θ). Com-

puting the set amounts to constructing the 0-level set of the function T (θ) − c(θ), where

c(θ) typically is simulated quantiles and thus a non-smooth function of θ. Computing the

level set of a non smooth function is essentially a grid-search problem which is only feasible

if dθ is small. However, in demand estimation, dθ cannot be small because at least a mod-

erate number of covariates have to be controlled for the assumption E(ξjt|zjt, Jt) = 0 to be

reasonable.

On the other hand, in demand estimation the coefficients of the control variables are

nuisance parameters that often are of no particular interest. The parameters of interest are

the price coefficient or price elasticity, which are small dimensional. Based on this observa-

tion, we propose a generalized profiling method to profile out the nuisance parameters and

only construct confidence sets for a parameter of interest.

The generalized profiling approach applies to general moment inequality models with

many moment inequalities. Thus from this point on, we treat ρ(wt, θ, g, g
J) as a generic

moment function with dimension k. In the demand model above, k = 2.

The parameter of interest, γ0, is related to θ0 through:

γ0 ∈ Γ(θ0) ⊆ Rdγ , (4.1)

where Γ : Θ→ 2R
dγ

is a known mapping where 2R
dγ

denotes the collection of all subsets of

Rdγ . Three examples of Γ are given below:

Example. Γ(θ) = {α}: γ0 is the price coefficient α0. In the simple logit model, the price

coefficient is all one needs to know to compute the demand elasticity.

Example. Γ(θ) = {ej(p, π, θ, x) = (αpj)/(πj∂σ
−1
j (π, x, σ0)/∂πj)}: γ0 is the own-price de-

mand elasticity of product j at a given value of the price vector p, the market share vector

π and the covariates x.
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Example. Γ(θ) = {ej(p, π, θ, x) : π ∈ [πl, πu]}: γ0 is the demand elasticity of product j

at a given value of the price vector p, the covariates x and at a market share vector that

is known to lie between πl and πu. This example is particularly useful when the elasticity

depends on the market share but the market share is not precisely observed. The interval

[πl, πu] can be a confidence interval of the market share.

The generalized profiling approach constructs a confidence set for γ0 by inverting a test

of the hypothesis:

H0 : γ0 ∈ Γ0, (4.2)

where Γ0 is the identified set of γ0: Γ0 = {γ ∈ Rdγ : ∃θ ∈ Θ0 s.t. Γ(θ) 3 γ}. Let Γ−1(γ) =

{θ ∈ Θ : Γ(θ) 3 γ}. The test to be inverted uses the profiled test statistic:

T̂T (γ) = T × min
θ∈Γ−1(γ)

Q̂T (θ), (4.3)

where Q̂T (θ) is an empirical measure of the violation to the moment inequalities. The

confidence set of confidence level p is the set of all points for which the test statistic does

not exceed a critical value cT (γ, p):

CST = {γ ∈ Rdγ : T̂T (γ) ≤ cT (γ, p)}. (4.4)

Notice that the new confidence set only involves computing a dγ-dimensional level set, where

dγ is often 1. The generalized profiling transfers the burden of searching (for minimum)

over the surface of the non smooth function T (θ)− c(θ) to searching over the surface of the

typically smooth and often convex function Q̂T (θ).

We choose a critical value, cT (γ, p), of significance level 1− p ∈ (0, 0.5), to satisfy

lim
T→∞

inf
(γ,F )∈H0

Pr(T̂T (γ) > cT (γ, p)) ≤ 1− p, (4.5)

where F is the distribution on (wt)
T
t=1 and H0 is the null parameter space of (γ, F ).6 As a

result, the confidence set asymptotically has the correct minimum coverage probability:

lim inf
T→∞

inf
(γ,F )∈H0

PrF (γ ∈ CST ) ≥ p. (4.6)

The left hand side is called the “asymptotic size” of the confidence set in Andrews and Shi

(2009). We achieve the asymptotic size control by deriving an asymptotic approximation for

the distribution of the profiled test statistic T̂T (γ) that is uniformly valid over (γ, F ) ∈ H0

and simulating the critical value from the approximating distribution through either a

6The definition of H0 along with other technical assumptions are given in Appendix A.
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subsampling or a bootstrapping procedure.

In the rest of the section, we describe the test statistic and the critical value in details

and show that (4.6) holds.

4.2 Test Statistic

Let G = Gz × GJ and g(zjt, Jt) = gz(zjt)× gJ(Jt). The test statistic T̂T (γ) is as defined in

(4.3) with

Q̂T (θ) =

ˆ
GT
S(ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(g), (4.7)

where GT is a truncated/simulated version of G such that GT ↑ G as T → ∞, µ(·) is a

probability measure on G, S(m,Σ) is a real-valued function that measures the discrepancy

of m from the inequality restriction m ≥ 0, and

ρ̄T (θ, g) = T−1
T∑
t=1

ρ(wt, θ, g),

Σ̂ι
T (θ, g) = Σ̂T (θ, g) + ι× Σ̂T (θ, 1)

Σ̂T (θ, g) = T−1
T∑
t=1

ρ(wt, θ, g)ρ(wt, θ, g)
′ − ρ̄T (θ, g)ρ̄T (θ, g)

′
. (4.8)

In the above definition, ι is a small positive number which is used because in some form

of S defined below, the inverse of Σ̂ι
T (θ, g)’s diagonal elements enter, and the ι prevents us

from taking inverse of zeros. In some other forms of S, e.g. the one used in the simulation

and empirical section of this paper, the ι does not enter the test statistic because S(m,Σ)

does not depend on Σ.

Appendix A gives the assumptions that the user-chosen quantities S, µ, G and GT should

satisfy. Under those assumptions, we can show that minθ∈Γ−1(γ) Q̂T (θ) consistently estimate

minθ∈Γ−1(γ)QF (θ) where

QF (θ) =

ˆ
G
S(ρF (θ, g),Σι

F (θ, g))dµ(g), (4.9)

with

ρF (θ, g) = EF (ρ(wt, θ, g))

ΣF (θ, g) = CovF (ρ(wt, θ, g)) and

Σι
F (θ, g) = ΣF (θ, g) + ιΣF (θ, 1). (4.10)
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The symbols “EF ” and “CovF ” denote expectation and covariance under the data distri-

bution F respectively. Notice that Γ0 depends on F . We make this explicit by changing the

notation Γ0 to Γ0,F for the rest of this paper. We can also show that minθ∈Γ−1(γ)QF (θ) = 0

if and only if γ ∈ Γ0,F . These two results imply that T̂T (γ) diverges to infinity at γ /∈ Γ0,F .

That implies that there is no information loss in using such a test statistic.

Lemma 4 summarizes those results. The parameter space H of (γ, F ) appearing in the

lemma is defined in Assumption A.2 in the appendix.

Lemma 4. Suppose that the conditions in Lemma 3 and Assumptions A.1,A.2, A.4, A.5(a)

and A.6 (a) and (d) hold. Then for any (γ, F ) ∈ H,

(a) minθ∈Γ−1(γ) Q̂T (θ)→p minθ∈Γ−1(γ)QF (θ) under F , and

(b) minθ∈Γ−1(γ)QF (θ) ≥ 0 and = 0 if and only if γ ∈ Γ0,F .

In the simulation and the empirical application of this paper, the following choices are

used mainly for computational convenience. For G, we divide the instrument vector (zjt, Jt)

into discrete instruments, zd,jt, and continuous instruments zc,jt.
7 Let the set Zd be the

discrete set of values that zd,jt can take. Normalize the continuous instruments to like in

[0,1]: z̃c,jt = FN(0,1)(Σ̂
−1/2
zc zc,jt), where FN(0,1)(·) is the standard normal cdf, Σ̂zc is the

sample covariance matrix of zc,jt. The set G is defined as

G = {ga,r,ζ(zd, zc) : ga,r,zd(zd, zc) = 1(z̃c ∈ Ca,r, zd = ζ), for Ca,r ∈ Ccc, ζ ∈ Zd}, where

Ccc = {×dzcu=1((au − 1)/(2r), au/(2r)] : au ∈ {1, 2, ..., 2r}, for u = 1, ..., dzc

and r = r0, r0 + 1, ...} (4.11)

where “cc” stands for “countable hyper-cube.” For GT , it is a truncated version of G. It is

defined the same as G except that in the definition of Ccc, we let r runs from r0 to r̄T where

r̄T →∞ as T →∞.

For S , we use

S(m,Σ) =

dm∑
j=1

[mj ]
2
−, (4.12)

where mj is the jth coordinate of m and [x]− = |min{x, 0}|. There may be efficiency loss

from not using the information in the variance matrix, but this S function brings great

computational convenience because it makes the minimization problem in (4.7) a convex

one. For µ(·), we use

µ({ga,r,ζ}) ∝ (100 + r)−2(2r)−dzK−1
d for g ∈ Gd,cc, (4.13)

7Jt naturally belongs to the zc,jt part.
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where Kd is the number of elements in Zd.

4.3 Critical Value

We propose two types of critical values, one based on standard subsampling and the other

based on a bootstrapping procedure with moment shrinking. Both are simple to compute.

The bootstrap critical value may have better small sample properties. The bootstrap pro-

cedure here, like in most problems with partial identification, does not lead to high-order

improvement. It is worth noting that we resample at the market level for both the subsam-

pling and the bootstrap.

Let us formally define the subsampling critical value first. It is obtained through the

standard subsampling steps: [1] from {1, ..., T}, draw without replacement a subsample of

market indices of size bT ; [2] compute T̂T,bT (γ) in the same way as T̂T (γ) except using the

subsample of markets corresponding to the indices drawn in [1] rather than the original

sample; [3] repeat [1]-[2] ST times obtain ST independent (conditional on the original sam-

ple) copies of T̂T,bT (γ); [4] let c∗sub (γ, p) be the p quantile of the ST independent copies. Let

the subsampling critical value be

csubT (γ, p) = c∗sub (γ, p+ η∗) + η∗, (4.14)

where η∗ > 0 is an infinitesimal number. The infinitesimal number is used to avoid making

hard-to-verify uniform continuity and strict monotonicity assumptions on the distribution

of the test statistic. It can be set to zero if one is willing to make the continuity assumptions.

Such infinitesimal numbers are also employed in Andrews and Shi (2009).

Let us now define the bootstrap critical value. It is obtained through the following steps:

[1] from the original sample {1, ..., T}, draw with replacement a bootstrap sample of size T ;

denote the bootstrap sample by t1, ..., tT , [2] let the bootstrap statistic be

T ∗T (γ) = min
θ∈Θ:γ∈Γ(θ)

ˆ
G
S(ν̂∗T (θ, g) + κ

1/2
T ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(G), , (4.15)

where ν̂∗T (θ, g) =
√
T (ρ̄∗T (θ, g) − ρ̄T (θ, g)), ρ̄∗T (θ, g) = T−1

∑T
τ=1 ρ(Xtτ , θ, g), and κT is a

sequence of moment shrinking parameters: κT /T +κ−1
T → 0; [3] repeat [1]-[2] ST times and

obtain ST independent (conditional on the original sample) copies of T ∗T (γ); [4] let c∗bt(γ, p)

be the p quantile of the ST copies. Let the bootstrap critical value be

cbtT (γ, p) = c∗bt(γ, p+ η∗) + η∗, (4.16)

where η∗ > 0 is an infinitesimal number which is the same as in the subsampling critical
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value above.

4.4 Coverage Probability

We show that the confidence sets defined in (4.4) using either csubT (γ, p) and cbtT (γ, p) have

asymptotically correct coverage probability uniformly over H0 under appropriate assump-

tions. The assumptions are given in the appendix for brevity.

Theorem 1 (CP). Suppose that the conditions for Lemma 3 and Assumptions A.1-A.3 and

A.5-A.7 hold, then

(a) (4.6) holds with cT (γ, p) = csubT (γ, p), and

(b) (4.6) holds with cT (γ, p) = cbtT (γ, p).

5 Empirical Application

5.1 Data Description

We now apply our inference strategy to a scanner data on demand for consumer goods,

which is both a demand setting that has wide policy relevance and one where sampling

variability in shares appears to be a prominent problem. We obtain data from Dominick’s

Database through the Kilts center at the University of Chicago, which covers weekly store-

level scanner data at Dominick’s Finer Foods (DFF) and has been used by many researchers

as the basis of demand studies, e.g., Chintagunta and Vishal (2003), Chen and Yang (2007),

etc.8

The data comprises all Dominick’s Fine Foods chain stores in the Chicago metropolitan

area over the years from1989 to1997. Like other scanner data sets, this data set provides

information on demand at store/week/UPC level, where a UPC is the finest level of product

description, i.e., the bar code that identifies a product. The set of UPC’s that a store places

on its shelves exactly corresponds to the choice set consumers who enter the store face. All

the relevant marketing decisions made by the store, i.e., which UPC’s to offer on its shelves,

where to place on shelves, how much to price and discount, etc, are decided on a weekly

basis. Thus different markets (i.e., a period of time over which the choice set is stable) are

naturally defined by different store/week pairs. The data in principle provide about 40,000

such store/week pairs.

An ideal feature of the data is that a UPC is listed for a given store/week market if

it actually is a UPC the store carries that week. Thus the data enable us to identify true

“zero sales” – no consumer who entered the store demanded the product that week, and

8For a complete list of papers using this dataset, see the website of Dominick’s Database:
http://research.chicagobooth.edu/marketing/databases/dominicks/index.aspx
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these are not confounded by the possibility that the product simply was not stocked that

week (this can be difficult to disentangle in other scanner data sets that only records data

on a upc if it sells in a given store/week). We summarize the percents of zero sales in the

entire Dominick’s database at the UPC level for all the categories in Table 1. We can see

that the fraction of observations with zero sales can even exceed 60% for some categories.

Table 1: Percent of Zero Sales in Dominick’s Database
Category Zeros(%) Category Zeros(%) Category Zeros(%)

Analgesics 58.02 Dish Detergent 42.39 Refrigerated Juices 27.83

Bath Soap 74.51 Front-end-candies 32.37 Soft Drinks 38.54

Beer 50.45 Frozen Dinners 38.32 Shampoos 69.23

Bottled Juices 29.87 Frozen Entrees 37.30 Snack Crackers 34.53

Cereals 27.14 Frozen Juices 23.54 Soaps 44.39

Cheeses 27.01 Fabric Softeners 43.74 Toothbrushes 58.63

Cigarettes 66.21 Grooming Products 62.11 Canned Tuna 35.34

Cookies 42.57 Laundry Detergents 50.46 Toothpastes 51.93

Crackers 37.33 Oatmeal 26.15 Bathroom Tissues 28.14

Canned Soup 19.80 Paper Towels 48.27

We choose the bathroom tissue category for our current analysis. Our choice is based

on a few different considerations. First, several authors have previously considered the

bathroom tissue category in the DFF data e.g., Israilevich (2004), Romeo (2005) Misra and

Mohanty (2008), and further the bathroom tissue industry has been a source of some policy

interest, see e.g., Hausman and Leonard (2002). Second, this category has a smaller fraction

of zeroes as compared to some other product categories, and thus is far from a “worst case”

scenario for the selection problem caused by zero sales for BLP, an issue we explore below.

As has been mentioned, markets are naturally formed by store/week pairs. A number

of papers analyzing the DFF data have focused on the interaction between market demo-

graphics and demand because there is rich demographic variation associated with the zip

codes of different stores and demand parameters could differ in arbitrary ways across dif-

ferent stores due to the different demographic surroundings of the stores. (see e.g., Hoch,

Kim, Montgomery, and Rossi (1995)). We respect this concern by focusing attention on

a single store.9 Given our choice of bathroom tissue, we will focus on the first two years

of data from this store, which are 1991-1992. This choice reflects the fact that a major

change in the bathroom tissue industry took place in 1993 when one of the major brands

Charmin brand introduced its “ultra” line of products (see Hausman and Leonard (2002)

9We select as the only store in a pricing zone (zone number is 13 in the dataset), which belongs to
“medium” price tier and is one of the 16 DFF’s reported zones. The store is numbered as 134 in the dataset,
which locates at the city of West Chicago. Our results are in no way dependent upon the selection of this
particular store.
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for a discussion), which very likely had a large impact on brand preferences due at the very

least to the big changes in advertising campaigns across brands that ensued. The period

1991-1992 thus represents a more stable demand period.

The market share for each UPC is constructed by dividing the weekly sales at the store

for each UPC by the “Customer Count” variable.10 Also, we invert DFF’s data on gross

margin to calculate the chain’s wholesale costs,11 which are used as the instruments for the

retail prices and is a standard choice of price instrument in the literature that looks at the

DFF data. The total number of observations (UPC/week) of our sample is 4438, which

consists of 104 weeks with an average number of UPC’s in each week being 43.

5.2 Utility Specification

The indirect random utility specification is given in (2) and rewritten here for easy reference:

uijt = δjt + εijt ≡ x
′
jtβ − αpjt + ξjt + εijt, j = 1, . . . , Jt, (5.1)

where pjt is the retail price, xjt includes indicator variables for package size, brand, pro-

motion, holiday, year and a flexible set of interactions between these variables. There are

11 brands, 9 package sizes, and promotion of UPC indicates that the store is marketing a

promotion on the UPC.

The key source of the price variation in the data is the decision by the store to put a

product on sale. In 1 we show the time series of price for an arbitrary UPC, and as can be

seen, the price variation largely takes the form of the product going on a temporary sale and

then reverting back to an “everyday” price. The sales aspect of the price variation draws

attention to the potential endogeneity problem between price pjt and the unobservable ξjt,

where the latter could reflect unobserved shelving and/or advertising choice by the store.

In particular, because stores are likely to advertise or shelf the product in a more prominent

way during weeks when the product is on a price sale, we might expect a negative correlation

between price and the unobservable.12

10This is the number of customers visiting the store during a week and purchasing something.
11The gross margin is defined as (retail price - wholesale cost)/retail price, so we get wholesale cost using

retail price×(1 - gross margin).
12The usual concern that price is positively correlated with the intrinsic product quality is being offset in

this scanner data environment by the fact we have a rich way to proxy for a UPC’s intrinsic product quality
in the form of brand, package, and brand/package interactions. An alternative strategy for controlling the
intrinsic product quality is to use UPC fixed effects. However given that we are including all the UPC’s
in this analysis (indeed one of our main empirical points is to highlight the importance of not selecting
out UPC’s when doing demand studies on scanner data), UPC fixed effects regression exhibit high degree
of instablity and sensitivity stemming from colinerity among the upc’s and other covariates. Our current
strategy appears to control for much of what a UPC fixed effect strategy seems to empirically offer.
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Figure 1: Price Variation of a UPC

We will model the random utility terms εijt as i.i.d. across i, j and t with the standard

type-I “extreme value” distribution function exp (− exp (−ε)), i.e., the “logit model”.13 In

the logic case, the price elasticity of a set of products It (possibly a single UPC, or a brand)

is simply εItt = αpItt (1− πItt) (where pItt is a price index of the set and πItt is the choice

probability of the set), and hence inference on α is sufficient to construct price elasticities.

The logit remains the workhorse of demand analysis for differentiated products both

because of its computational simplicity and the transparency of its policy implications (see

e.g., Werden and Froeb (1994)). It is also a fundamental starting point that serves to

motivate potentially richer specifications. Our strategy in isolating the logit is intentional:

we wish to demonstrate that even for this widely recognized and seemingly well understood

model, the problem of the demand inference with many markets still poses serious empirical

problems and that our inference strategy can actually reveal new insights in this context.14

5.3 The BLP Approach on the Bath Tissue Data

Let us recall that the BLP approach is designed for a “many products” environment in

which it is assumed that

1. the number of consumers increases at a sufficiently fast rate with the number of

products and

2. product unobservables are presumed to be independent,

13The outside good has utility ui0t = εiot where εi0t is also type-I extreme value.
14There is nothing that would prevent us from adding random coefficients or nests among products.
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and is based on inverting empirical market shares to give rise to the estimating equation

(2.4). In the logit case, the inverse market share function σ−1 takes an analytically closed

form, and the estimating equation (2.4) can be expressed as

log

(
sjt
s0t

)
= x

′
jtβ − αpjt + ξjt, (5.2)

where the empirical market shares sjt approximates the true underlying choice probability

πjt sufficiently well as the number of consumers increases at a sufficiently fast rate. On

the basis of (5.2), the parameters (α, β) can be estimated in (5.2) using an instrumental

variables regression.

In the “many markets” case, which our empirical setting clearly represents, we have

already argued that BLP approach is no longer appropriate. The critical identification

problem that we brought to light in our earlier analysis was that sjt will no longer ap-

proximates πjt arbitrarily well enough because the consumers in a market does not grow

asymptotically with the number of markets, and thus the finite sample error in sjt remains

present in the limit. In the context of the logit model (5.2), this problem can be seen

in a fairly concrete way. First, observe that the sjt and s0t enters the regression nonlin-

early, so that there is a nonlinear measurement error problem if sampling error in shares

is used instead of the true shares πjt and π0t. As the literature has shown (e.g. Abrevaya

and Hausman (2004)), a non-linear measurement error problem can cause the direction of

asymptotic bias in the parameter estimate of (α, β) to go in various direction. In addition,

sampling error can lead to sjt = 0, i.e., a zero observed market share, which is a prominent

phenomenon in our data as shown in Table 1. Under the BLP approach, such zeroes would

actually rejects the model as the inverse share mapping σ−1 does not exist at the bound-

ary of the simplex (i.e., log
(
sjt
s0t

)
doesn’t exist when sjt = 0). This forces the researcher

using the BLP approach to exclude these observations from the regression, which gives rise

to sample selection problem as we are selecting observations based on the outcome of the

dependent variable. It is fairly easily seen that the selection bias tends to produce an at-

tenuation bias on the price coefficient α, that is, to produce demand estimates that are too

inelastic. The combined effect of the nonlinear measurement error and the selection may

vary from one empirical setting to another.15

15To see this selection bias, consider for simplicity a binary choice model where

δt = αpt + ξt,

and ξt is independent of xt. The choice probability of the product is increasing in the mean utility δj .
Because α < 0, this choice probability πt = σ (αpt + ξt) is increasing in ξt and decreasing in pt. If the
sample share is from finite number of individual consumers, then the probability that the sampled share st
is non-zero is an increasing function of πt. Let us consider a simplified version of this selection mechanism
so as to make the point transparent: suppose that we observe market t in the sample iff σ (αpt + ξt) ≥ π.
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If we impose the BLP assumptions on the data, i.e., systematically exclude the UPC’s

with zero shares, ignore any remaining sampling error in shares, and treat the product

unobservables as independent, then the result is the following parameter estimates for the

price coefficient – the main parameter of interest – and the average own-price elasticity

which is computed from the price coefficient.

Table 2: Results of the Logit Models
Price

Coefficient
Average Own

Price Elasticity
No. of

Observations

IV Logit
-1.50

[-1.90, -1.11]
-2.40

[-3.04, -1.78]
3565

OLS Logit
-2.17

[-2.37, -1.98]
-3.472

[-3.79, -3.17]
3565

Note: 95% Confidence Intervals are in [·]

As can be seen, the IV changes the OLS estimates in the expected direction as we already

anticipated based on the likely negative relationship between price and the unobservable

as discussed above. However all the concerns raised above should make us wary of these

results. In order to get a better sense of the general nature of the bias of these estimates

and to help provide guidance on the choice of tuning parameters for our inference strategy,

we now turn to a monte carlo analysis that mimics the structure of our data.

5.4 A Monte Carlo Analysis

We now consider a Monte Carlo study that is designed to serve two main purposes: 1) to

gain some further intuition on the possible nature of the bias of the above BLP estimates and

2) to provide guidance on the performance of different choices of the tuning parameters κT

underlying the bootstrap procedure for the generalized profiling of the moment inequalities

that forms the basis of our empirical strategy.

We simulate Jt = 50 products and nt = 15000 consumers for each of t = 1, . . . , T = 100,

which closely matches the structure of our data. We employ a logit model with a single

observable product characteristic x whose distribution we wish to bear some similarity

to the distribution of our main covariate of interest in our data, namely price. We thus

simulate x as uniform [0, 10] (this being the approximate range of prices in the data). The x

Then we have that d = 1 iff ξt ≥ σ−1 (π) − αpt which is increasing in pt. Thus the selection mechanism is
such that E [ξt | pt, dt = 1] is an increasing function of pt. If E [ξt | pt, dt = 1] = γpt where γ > 0, then the
regression

E [δt | pt, dt = 1] = (α+ γ) pt,

will tend to bias the slope coefficient towards zero. Said another way, it will bias the price elasticity towards
being too inelastic.
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characteristic is independent across products and markets, and each consumer i = 1, . . . , nt

has utility for a product given by

uijt = α0 + β0xjt + ξjt + εijt j = 1, . . . , Jt

and ui0t = εi0t, where εijt are i.i.d. type-I extreme value and (α0, β0) = (1, 1). The

unobservable ξjt is simulated in such a way that the conditional mean restriction holds

E [ξjt | xjt] = 0, but exhibits a natural form of heteroskedasticity. In particular we take

ξt ∼ (xt ≥ 5)Unif [−.05, .05]+(xt < 5)Unif
[
−.5ξ̄, .5ξ̄

]
, which introduces a simple pattern

of heteroskedasticity in which there is larger variance in the unobservable for higher priced

markets (lower x) products. We focus on a range of ξ̄ that makes the fraction of products

with zero shares lie within the same general range as found in our data, i.e., roughly 20-30

percent of product level observations.

We implement both the “naive” logit BLP estimator described in the above Section

5.3, and our generalized profiling procedure for the moment inequalities we constructed in

Section 3.2 for the many markets environment. In particular we profile out the nuisance

parameter α and employ the bootstrapping procedure described in Section 4.3 to obtain

confidence sets for β0. One implementation issue with the bootstrapping procedure is

the choice of the tuning parameter κT , which balances the power and the size. For any

κT = o(T ), the asymptotic power of our test increases with κT . However, for the asymptotic

theory to provide good approximation, (κT /T )1/2 needs to be reasonably small in order

to kill a non-estimable (asymptotically Gaussian) term in the bootstrap statistic.16 We

choose κT = T/(c log T ) because (κT /T )1/2 = 1/
√
c log T goes to zero reasonably fast. The

shrinking rate log T is the same as its counterpart suggested in Andrews and Soares (2010)

and Andrews and Shi (2009). We choose the constant c through a series of Monte Carlo

simulation of the coverage proability (of the true value β0 = 1, CP) and the false coverage

probability (of a point outside the identified set of β, FCP). We fine that the CP’s are

always 1, showing that our confidence set does not under cover. The FCP’s are shown in

Table 3 below. As the table shows, at c = 0.5− 0.6 our confidence set has decent FCP’s. 17

16see e.g. (C.73) in the proof of Theorem (1)(b).
17Another implementation details for our inference strategy are the set of g functions, GT , which translate

the conditional moment inequalities into unconditional moment inequalities, and also the choice of the lower
bounds εt for a product’s true choice probability. Following Andrews and Shi (2009), we transform xt’s
into (0, 1) using the formula Φ ((xt − x̄) /σ̂x) , where x̄ and σ̂x are the sample mean and standard deviations
of xt and Φ (·) is the standard normal distribution function. The g functions are then chosen as indicator
functions defined by hypercubes in [0, 1] The hypercubes have side-edge lengths r−1 for r = r0, ..., r1, where
r0 = 1, r1 = 50 for T = 100. The final implementation detail is the lower bound for the true share: εt. We
set εt to be machine zero.
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Table 3: False Coverage Probabilities (FCP) of the 95%
Confidence Interval

c\ξ̄ ξ̄ = 11 13 15 17

0.1 1 1 1 1
0.3 0.577 0.960 0.768 1
0.4 0.510 0.288 0.285 0.644
0.5 0.636 0.256 0.244 0.455
0.6 0.894 0.344 0.305 0.477
0.7 0.994 0.591 0.483 0.595
0.9 1 0.995 0.961 0.936

Note: The FCPs are computed at 0.95, 0.94, 0.93, 0.91 for

ξ̄ = 11, 13, 15, 17, respectively.

The results of both the naive BLP and our approaches are shown in Table 4, which

reports the BLP estimates along with our 50% and 95% confidence intervals (CS). As

can be seen, the selection bias with the “naive” logit goes in the anticipated direction

of attenuating the coefficient on the variable of interest towards zero, sometimes severely

so. On the other, our confidence intervals based on the moment inequalities, which were

designed especially for the many markets environment, always contain the true value and for

the whole range of ξ̄ exclude the biased BLP-logit point estimates. Moreover, our confidence

are fairly informative even when the degree of heteroskedasticity and hence selection in the

data as determined by ξ̄ is large.
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Table 4: Monte Carlo Results: Point and Bound Estimates

ξ̄
Logit PointEstimate

and 95% CS
50% CS 95% CS

Percent of
Positive
Shares

1
0.94

[0.93, 0.94]
[0.98, 1.02] [0.97, 1.04] 82.4%

3
0.90

[0.89, 0.91]
[0.97, 1.03] [0.96, 1.06] 82.5%

5
0.85

[0.84, 0.86]
[0.97, 1.04] [0.95, 1.12] 82.3%

7
0.77

[0.76, 0.78]
[0.97, 1.03] [0.95, 1.15] 80.2%

9
0.69

[0.68, 0.71]
[0.97, 1.03] [0.94, 1.06] 78.9%

11
0.61

[0.60, 0.63]
[0.97, 1.02] [0.94, 1.05] 77.9%

13
0.53

[0.51, 0.55]
[0.97, 1.02] [0.94, 1.04] 76.7%

15
0.44

[0.42, 0.46]
[0.96, 1.03] [0.94, 1.05] 75.6%

17
0.34

[0.32, 0.36]
[0.94, 1.04] [0.92, 1.06] 74.1%

19
0.24

[0.21, 0.26]
[0.90, 1.10] [0.84, 1.26] 72.7%

20
0.18

[0.16, 0.21]
[0.86, 1.16] [0.75, 1.47] 71.8%

Note: True value = 1, T = 100, J = 50, κT = T/(0.5 · log(T ))

5.5 The Many Markets Approach on the Bath Tissue Data

We now perform inference on the price coefficient and the resulting elasticities in the logit

model using our generalized profiling strategy applied to the moment inequalities that we

derived for the many markets model. The Monte Carlo analysis above suggests that the BLP

estimates shown in Table 2 are biased towards zero, and thus generate price elasticities that

are too small. Relative to the monte carlo, we now must profile out many more coefficients

besides the constant term because the specification in Section 5.2 includes many more

control variables. Indeed, to our knowledge, such a high dimensional model as the one

we here consider has not been empirically examined in the moment inequality literature,

and our ability to do so is due to the focus on a subset of parameters (namely the price
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coefficient) that the generalized profiling procedure allows.18 19

The results of our inference is shown in Table 5. As can be seen our inference strategy

produces a substantially larger in the magnitude of the price coefficients, which is consistent

with the results of the monte carlo analysis. We have shown the results for both the choice

of the tuning parameter constants c = .6 and c = .5, which emerged from the Monte Carlo

as having the desirable size and power characteristics.20

Table 5: 95% Confidence Intervals of Price Coefficient
and Average Own Price Elasticity

c Price Coefficient
Average Own Price

Elasticity

0.6 [-4.17, -3.11] [-7.73, -5.77]
0.5 [-4.55, -3.06] [-8.44, -5.67]

Note: κT = T/(c · log(T )) and ε = minj,t [ŝjt1 (ŝjt > 0)] /100, 000.

To better understand our estimates in comparison to the naive BLP logit, we translate

our price coefficient from the UPC level demand system into an average brand level elas-

18This expanded set of covariates thus requires thus more g functions than the monte carlo. We construct
the set GT as described in (4.11). Our discrete instruments are “brand”, “size”, “promotion”, “holiday”,
and “year” each taking 11, 9, 2, 2 and 2 values, respectively. Our only continuous instrument is whole sale
cost and we use r0 = 1 and r̄T = 5 ≈ T 1/3. The GT thus constructed potentially contain a total number of
(2 + 4 + ...+ 10)× 11× 9× 2× 2× 2 = 23760 g functions and following (4.13), the weight for a g function
indexed by r is (100 + r)−2(2r × 11× 9× 2× 2× 2)−1. To be consistent with the literature, we do not use
Jt as an instrument even though our theory suggests such a possibility. We select the minimum possible
choice probability εt (to be the same across t) by taking the smallest share in the data and dividing it by
100,000. The divider 100, 000 is the the largest number of the form 10x for x ∈ N that guarantees nonempty
confidence sets.

19Determine the number of hypercubes (g functions) will depend upon the empirical application - too few
g functions leads to information loss while too many of them increases sample noise. And we haven’t found
a general theoretical rule for choosing it. From our own (somewhat limited) Monte Carlo and empirical
experience, choosing the number such that, on average, each smallest cube contains 10 to 50 sample points
usually “works”. In this example, the number of smallest cubes is 10× 11× 9× 2× 2× 2 = 7920. But we
find most of them contains no sample points and only 401 of them are “nonempty”. So, on average, each of
the 401 nonempty cubes contains about 11 ≈ 4438/401 sample points.

20One question that arises is how to compute an elasticity when the underying choice probability πjt is
not known. Here we show that the noise in st does not affect the estimation of the elasiticies that we choose
to focus on – the average elasticity across markets:

εI = αE [pItt (1− πItt)]

where the expectation is taken across markets t and It is some set of products. To estimate εI , we must
estimate E [pItt (1− πItt)]. But notice that where the last equality follows because E [sItt | πItt, pItt] = πItt
due to the way that sItt is generated. We can estimate E [pItt (1− sItt)] consistently using the sample
analogue

T−1
T∑
t=1

pItt (1− sItt) .

Thus, E[pItt(1−πItt)] is consistently estimated by T−1 ∑T
t=1 pItt (1− sItt) . This strategy can be applied to

any subset of products, including a single UPC (in which case the price is simply the price of the UPC pjt).
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ticities for all weeks in the data, which is given in Table 6. This allows us to compare our

findings against the brand level elasticities estimated by Hausman and Leonard (2002) (HL

for short) using city wide aggregate data from a different source for this industry. Because

the HL estimates were formed using aggregate city wide data on brand purchases with a

representative agent model of aggregate demand, the elasticities we derive should be at least

as large as the HL estimates as our data reflects store level purchases (hence there can be

stockpiling effects as well as substitution to other stores). Observe that the brand elastic-

ities derived under the BLP logit are all considerably less elastic than the HL estimates,

which is contrary to the standard intuition (we note that these BLP logit-type elasticities

are similar in magnitude to the brand elasticities derived in other papers for other product

categories that start from a UPC level demand system see for example Chintagunta (2000)).

Our estimates on the other hand show elasticities that are at least as elastic, and for

all but one brand contain the HL point elasticities. The only brand where we see a lack

of intersection between our estimates and the HL estimates is Charmin, and this can be

explained by the fact that we restricted attention to the data before 1993 to avoid the

product introduction of Charmin’s ultra line of products, whereas HL use data from 1992

to 1995 . The Charmin “ultra” line and its popularity undoubtedly made Charmin a

less elastic overall brand. We also note that the naive BLP logit approach still generate

elsaticities that are too low if instead of dropping the UPC with zero demand, we form

“aggregate” products from the UPC level data, i.e., brands, and estimate a BLP brand

level logit (this is exhibited in the last column). Our finding of more elastic demand when

the many markets features of the data are taken seriously, which our approach does, has

some significant policy implications. A standard “complaint” against logit-type models

(including mixed logit models) for demand for differentiated products is that it tends to

produce elasticities that are unrealistically inelastic compared to standard intuitions about

an industry. Our empirical exercise potentially points to one possible source of this general

problem and its solution.

Table 6: Own Price Elasticity Comparison

Brand
95% CI 1

(c = 0.5)
95% CI 2

(c = 0.6)
IV Logit

95% CI

Hausman
and

Leonard

Brand-Level
IV Logit

95% CI

Angel Soft [-5.33, -3.58] [-4.88, -3.64] [-2.23, -1.30] -4.07 [-1.89, -1.48]

Charmin [-8.66, -5.82] [-7.93, -5.92] [-3.61, -2.11] -2.29 [-3.21, -2.52]

Cottonelle [-7.48, -5.03] [-6.86, -5.11] [-3.12, -1.83] -3.29 [-2.65, -2.08]

Kleenex [-5.09, -3.42] [-4.66, -3.48] [-2.12, -1.24] -3.29 [-1.80, -1.42]

Quilted Northern [-6.53, -4.39] [-5.98, -4.46] [-2.73, -1.59] -3.08 [-2.31, -1.82]

Scott [-2.97, -1.99] [-2.72, -2.03] [-1.24, -0.72] -1.80 [-1.05, -0.83]
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A Assumptions

In this section, we list all the technical assumptions. The assumptions are grouped into seven

categories. Assumption A.1 restricts the space of θ; Assumption A.2 restricts the space of

(γ, F ), i.e. the parameters that determines the true data generating process. Assumption

A.3 further restricts the space (γ, F ) to satisfy the null hypothesis γ ∈ Γ0. Assumption

A.4 is the full support condition on the measure µ on G. Assumption A.5 regulates how

GT approaches G as T increases. Assumption A.6 restricts the function S(m,Σ) to satisfy

certain continuity, monotonicity and convexity conditions. Assumption A.7 regulates the

subsample size bT and the moment shrinking parameter κT in the bootstrap procedure.

Assumption A.1. (a) Θ is compact, (b) Γ is upper hemi-continuous, and (c) Γ−1(γ) is

either convex or empty for any γ ∈ Rdγ .

To introduce Assumption A.2 we need the following extra notation. Define the empirical

process indexed by (θ, g) ∈ Θ× G:

ν̂T (θ, g) =
√
T (ρ̄T (θ, g)− ρF (θ, g)). (A.1)

Let νF (θ, g) : (θ, g) ∈ Θ× G denote the tight Gaussian process with covariance kernel

ΣF (θ(1), g(1), θ(2), g(2)) = CovF

(
ρ(wt, θ

(1), g(1)), ρ(wt, θ
(2), g(2))

)
. (A.2)

Notice that ΣF (θ, g) = ΣF (θ, g, θ, g).

Let the derivative of ρF (θ, g) with respect to θ be GF (θ, g).

For any γ ∈ Rdγ , let the set Θ0,F (γ) be

Θ0,F (γ) = {θ ∈ Θ : QF (θ) = 0 & Γ(θ) 3 γ}, (A.3)

We call Θ0,F (γ) the zero-set of QF (θ) under (γ, F ). Note that for any γ ∈ Rdγ , γ ∈ Γ0,F if

and only if Θ0,F (γ) 6= ∅.
Let the distance from a point to a set be the usual mapping:

d(a,A) = inf
a∗∈A

‖a− a∗‖, (A.4)

where ‖ · ‖ is the Euclidean distance.

Let F denote the set of all probability measures on (wt)
T
t=1. Let Ḡ = G ∩ {1}. The

following assumption defines the parameter space H for the pair (γ, F ).

Assumption A.2. The parameter space H of the pairs (γ, F ) is a subset of Rdγ ×F that

satisfies:

32



(a) under every F such that (γ, F ) ∈ H for some γ ∈ Rdγ , the markets are independent

and ex ante identical to each other, i.e. {ρ(wt, θ, g)}Tt=1 is an i.i.d. sample for any θ, g;

(b) limM→∞ sup(γ,F )∈HEF [sup(θ,g)∈Γ−1(γ)×Ḡ ||ρ(wt, θ, g)||21{||ρ(wt, θ, g)||2 > M}] = 0;

(c) the class of functions {ρ(wt, θ, g) : (θ, g) ∈ Γ−1(γ) × Ḡ} is F -Donsker and pre-

Gaussian uniformly over H;

(d) the class of functions {ρ(wt, θ
(1), g(1))ρ(wt, θ

(2), g(2)) : (θ(1), g(1)), (θ(2), g(2)) ∈ Γ−1(γ)×
Ḡ} is Glivenko-Cantelli uniformly over H;

(e) ρF (θ, g) is differentiable with respect to θ ∈ Θ, and there exists constants C and δ2 >

(δ1/2)−1 such that, for any (θ(1), θ(2)), sup(γ,F )∈H,g∈G ||vec(GF (θ(1), g))−vec(GF (θ(2), g))|| ≤
C × ||θ(1) − θ(2)||δ2, and

(f) Σι
F (θ, g) ∈ Ψ for all (γ, F ) ∈ H and θ ∈ Γ−1(γ) where Ψ is a set of k × k positive

semi-definite matrices, and {vech(ΣF (·, g(1), ·, g(2))) : (Γ−1(γ))2 → R(d2m+dm)/2 : (γ, F ) ∈
H, g(1), g(2) ∈ Ḡ} are uniformly bounded and uniformly equicontinuous.

Remark. Part (a) is the i.i.d. assumption, which can be replaced with appropriate weak

dependence conditions at the cost of more complicated derivation in the uniform weak

convergence of the bootstrap empirical process. Part (b) is standard uniform Lindeberg

condition. Part (c)-(d) imposes restrictions on the complexity of the set G as well as

on the shape of ρ(wt, θ, g) as a function of θ. A sufficient condition is (i) ρ(wt, θ, g) is

Lipschitz continuous in θ with the Liptschiz coefficient being integrable and (2) the set Cz

in the definition of Gz forms a Vapnik-Chervonenkis set. The Liptschitz continuity is also

a sufficient condition of part (f).

The following assumptions defines the null parameter space, H0, for the pair (γ, F ).

Assumption A.3. The null parameter space H0 is a subset of H that satisfies:

(a) for every (γ, F ) ∈ H0, γ ∈ Γ0,F , and

(b) there exists C, c > 0 and δ1 ≥ 2 such that QF (θ) ≥ C · (d(θ,Θ0,F (γ))δ1 ∧ c) for all

(γ, F ) ∈ H and θ ∈ Γ−1(γ).

Remark. Part (b) is a identification strength assumption. It requires the criterion function

to increase at certain minimum rate as θ is perturbed away from the identified set. This

assumption is weaker than the quadratic minorant assumption in Chernozhukov, Hong,

and Tamer (2007) if δ1 > 2 and as strong as the latter if δ1 = 2. Putting part (b) and

Assumption A.2(e) together, we can see that there is a trade-off between the minimum

identification strength required and the degree of Hölder continuity of the first derivative of

ρF (·, g). If ρF (·, g) is linear, δ1 can be arbitrarily large – the criterion function can increase

very slowly as θ is perturbed away from the identified set.

The following assumption is on the measure µ. For any θ, let a pseudo-metric on G be:

||g(1)−g(2)||θ,F = ||ρF,j(θ, g(1))−ρF,j(θ, g(2))||. This assumption is needed for Lemma 4 and
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not needed for the asymptotic size result Theorem 1.

Assumption A.4. For any θ ∈ Θ, µ(·) has full support on the metric space (G, || · ||θ,F ).

Remark. Assumption A.4 implies that for any θ ∈ Θ, F and j, if ρF,j(θ, g0) < 0 for some g0 ∈
G, then there exists a neighborhood N (g0) with positive µ-measure such that ρF,j(θ, g) < 0

for all g ∈ N (g0).

The following assumption is on the set GT .

Assumption A.5. (a) GT ↑ G as T →∞ and

(b)lim supT→∞ sup(γ,F )∈H0
supθ∈Γ−1(γ)

´
G/GT S(

√
TρF (θ, g),ΣF (θ, g))dµ(g) = 0..

The following assumptions are imposed on the function S. For a ξ > 0, let the ξ-

expansion of Ψ be Ψξ = {Σ : infΣ1∈Ψ ||vech(Σ)− vech(Σ1)|| ≤ ξ}.

Assumption A.6. (a) S(m,Σ) is continuous in (m,Σ) on (−∞,∞]dm×Ψξ for some ξ > 0.

(b) There exists a constant C > 0 and ξ > 0 such that for any m1,m2 ∈ Rdm and

Σ1,Σ2 ∈ Ψξ, we have |S(m1,Σ1)−S(m2,Σ2)| ≤ C
√

(S(m1,Σ1) + S(m2,Σ2))(S(m2,Σ2) + 1)∆,

where ∆ = ||m1 −m2||2 + ||vech(Σ1 − Σ2)||.
(c) S is nonincreasing in m.

(d) S(m,Σ) ≥ 0 and S(m,Σ) = 0 if and only if m ∈ [0,∞]dm.

(e) S is homogeneous in m of degree 2.

(f) S is convex in m ∈ Rdm for any Σ ∈ Ψξ.

Remark. We show in the lemma below that Assumption A.6 is satisfied by the example in

(4.12) as well as the SUM and MAX functions in Andrews and Shi (2009):

SUM: S(m,Σ) =

dm∑
j=1

[mj/σj ]
2
−, and

MAX: S(m,Σ) = max
1≤j≤dm

[mj/σj ]
2
−, (A.5)

where σ2
j is the jth diagonal element of Σ. Assumptions A.6(b) and (f) rule out the QLR

function in Andrews and Shi (2009): S(m,Σ) = mint≥0(m − t)
′
Σ−1(m − t). The QLR

functions are computationally much more cumbersome than the other choices, as discussed

in Andrews and Shi (2009), and thus much less appealing in practice. On the other hand,

imposing these two assumptions makes our proof techniques (using uniform asymptotic

approximation) possible.

Lemma A.1. (a) Assumption A.6 is satisfied by the S function in (4.12) for any set Ψ.

(b) Assumption A.6 is satisfied by the SUM and the MAX functions in (A.5) if Ψ is

a compact subset of the set of positive semi-definite matrix with diagonal elements bounded

below by some constant ξ2 > 0.
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The following assumptions are imposed on the tuning parameters in the subsampling

and the bootstrap procedures.

Assumption A.7. (a) In the subsampling procedure, b−1
T + bTT

−1 → 0 and ST →∞, and

(b)In the bootstrap procedure, κ−1
T + κTT

−1 → 0 and ST →∞.

B Proof of Lemmas 4 and A.1

Proof of Lemma 4. (a) Assumptions A.2(c)-(d) imply that under F ,

∆ρ,T ≡ sup
θ∈Γ−1(γ),g∈Ḡ

||ρ̄T (θ, g)− ρF (θ, g)|| →p 0, and

sup
θ∈Γ−1(γ),g∈Ḡ

||vech(Σ̂T (θ, g)− ΣF (θ, g))|| →p 0. (B.1)

The second convergence implies that

∆Σ,T ≡ sup
θ∈Γ−1(γ),g∈G

||vech(Σ̂ι
T (θ, g)− Σι

F (θ, g))|| →p 0. (B.2)

By Assumption A.2(b), supθ∈Γ−1(γ),g∈G ||ρF (θ, g)|| < M∗ for some M∗ < ∞. Thus,

{(ρF (θ, g),Σι
F (θ, g)) : (θ, g) ∈ Γ−1(γ)×G} is a subset of the compact set [−M∗,M∗]dm ×Ψ.

By Assumption A.2(f) and Equations (B.1) and (B.2), we have {(ρ̄T (θ, g), Σ̂ι
T (θ, g)) : (θ, g) ∈

Γ−1(γ)× G} ⊆ [−M∗ − ξ,M∗ + ξ]dm ×Ψξ with probability approaching one for any ξ > 0.

By Assumption A.6(a), S(m,Σ) is uniformly continuous on [−M∗,M∗]dm ×Ψ. Therefore,

for any ε > 0,

Pr F

(∣∣∣∣ min
θ∈Γ−1(γ)

Q̂T (θ)− min
θ∈Γ−1(γ)

ˆ
GT
S(ρF (θ, g),Σι

F (θ, g))dµ(g)

∣∣∣∣ > ε

)
≤Pr F

(
sup

θ∈Γ−1(γ),g∈G
|S(ρ̄t(θ, g), Σ̂ι

t(θ, g))− S(ρF (θ, g),Σι
F (θ, g))| > ε

)
→0. (B.3)

Now it is left to show that minθ∈Γ−1(γ)

´
GT S(ρF (θ, g),Σι

F (θ, g))dµ(g)→ minθ∈Γ−1(γ)QF (θ)
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as T →∞. Observe that

0 ≤ min
θ∈Γ−1(γ)

QF (θ)− min
θ∈Γ−1(γ)

ˆ
GT
S(ρF (θ, g),Σι

F (θ, g))dµ(g)

≤ sup
θ∈Γ−1(γ)

ˆ
G/GT

S(ρF (θ, g),Σι
F (θ, g))dµ(g)

≤
ˆ
G/GT

sup
θ∈Γ−1(γ)

S(ρF (θ, g),Σι
F (θ, g))dµ(g). (B.4)

We have supθ∈Γ−1(γ) S(ρF (θ, g),Σι
F (θ, g)) <∞, because ρF (θ, g) ∈ [−M∗,M∗]k and Σι

F (θ, g) ∈
Ψ and Assumption A.6(a). Thus the last line of (B.4) converges to zero under Assumption

A.5(a). This and (B.3) together show part (a).

(b) The first half of part (b), minθ∈Γ−1(γ)QF (θ) ≥ 0, is implied by Assumption A.6(d).

Suppose γ ∈ Γ0,F . Then there exists a θ∗ ∈ Γ−1(γ) such that ρF (θ∗, g) ≥ 0 for all g ∈ G
by Lemma 3. This implies that S(ρF (θ∗, g),ΣF (θ∗, g)) = 0 for all g ∈ G by Assumption

A.6(d). Thus, QF (θ∗) = 0. Because minθ∈Γ−1(γ)QF (θ) ≤ QF (θ∗) = 0, this shows the “if”

part of the second half.

Suppose that minθ∈Γ−1(γ)QF (θ) = 0. By Assumptions A.1(a)-(b), Γ−1(γ) is compact.

By Assumptions A.2(e) and (f), QF (θ) is continuous in θ. Thus, there exists a θ∗ ∈ Γ−1(γ)

such that QF (θ∗) = minθ∈Γ−1(γ)QF (θ) = 0. We show by contradiction that this implies γ ∈
Γ0,F . Suppose that γ /∈ Γ0,F . Then for any θ ∈ Γ−1(γ), in particular, for θ∗, ρF,j(θ

∗, g∗) < 0

for some g∗ ∈ G and some j ≤ dm by Lemma 3. Then by Assumption A.4, there exists a

neighborhood N (g∗) with positive µ-measure, such that ρF,j(θ
∗, g) < 0 for all g ∈ N (g∗).

This implies that QF (θ∗) > 0, which contradicts QF (θ∗) = 0. Thus, the “only if” part is

proved.

Proof of Lemma A.1. We prove part (b) only. Part (a) follows from the arguments for part

(b) because the S function in part (a) is the same as the SUM S function with Σ = I. Let

ξ be any positive number less than ξ2. Then the diagonal elements of all matrices in Ψξ are

bounded below by ξ2 − ξ.
We prove the SUM part first. Assumptions A.6(a), (c)-(f) are immediate. It suffices to

36



verify Assumptions A.6(b). To verify Assumption A.6(b), observe that

|S(m1,Σ1)− S(m2,Σ2)| =

∣∣∣∣∣∣
k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ2,j ]−)([m1,j/σ1,j ]− + [m2,j/σ2,j ]−)

∣∣∣∣∣∣
≤

2
k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ2,j ]−)2(S(m1,Σ1) + S(m2,Σ2))


1/2

≡{2A(S(m1,Σ1) + S(m2,Σ2))}1/2 , (B.5)

where the inequality holds by the Cauchy-Schwartz inequality and A :=
∑k

j=1([m1,j/σ1,j ]−−
[m2,j/σ2,j ]−)2. Now we manipulate A in the following way:

A =
k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ1,j ]− + [m2,j/σ1,j ]− − [m2,j/σ2,j ]−)2

≤ 2
k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ1,j ]−)2 + 2
k∑
j=1

([m2,j/σ1,j ]− − [m2,j/σ2,j ]−)2

= 2
k∑
j=1

([m1,j/σ1,j ]− − [m2,j/σ1,j ]−)2 + 2
k∑
j=1

(σ2,j − σ1,j)
2[m2,j/σ2,j ]

2
−/σ

2
1,j

≤ 2||m1 −m2||2/(ξ2 − ξ) + 2{||vech(Σ1 − Σ2)||/(ξ2 − ξ)}S(m2,Σ2)

≤ 2(ξ2 − ξ)−1(S(m2,Σ2) + 1)(||m1 −m2||2 + ||vech(Σ1 − Σ2)||), (B.6)

where the first inequality holds by the inequality (a + b)2 ≤ 2(a2 + b2) and the second

inequality holds because (σ2,j − σ1,j)
2 ≤ |σ2

2,j − σ2
1,j | ≤ ||vech(Σ1 − Σ2)|| and because

σ2
1,j , σ

2
2,j ≥ (ξ2 − ξ)1/2. Plug (B.6) in (B.5), we obtain Assumptions A.6(b).

The proof for the MAX part is the same as the SUM part except some minor changes.

The first and obvious change is to replace all
∑k

j=1 involved in the above arguments by

maxj=1,...,k . The second change is to replace the Cauchy-Schwartz inequality used in (B.5)

by the inequality |maxj ajbj | ≤ (maxj a
2
j × maxj b

2
j )

1/2. The rest of the arguments stay

unchanged.

C Proof of Theorem 1

We first introduce the approximation of T̂T (γ) that connects the distribution of T̂T (γ)

with those of the subsampling statistic and the bootstrap statistic. Let ΛT (θ, γ) = {λ :
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θ+λ/
√
T ∈ Γ−1(γ), d(θ+λ/

√
T ,Θ0,F (γ)) = ||λ||/

√
T}. The approximation is of the form:

T̄ apprT (γ) = (C.1)

min
θ∈Θ0,F (γ)

min
λ∈Λ̄T (θ,γ)

ˆ
G
S(νF (θ, g) +GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))dµ(g).

Theorem C.1 shows that T̄ apprT (γ) approximates T̂T (γ) asymptotically.

Theorem C.1. Suppose that the conditions in Lemma 3 and Assumptions A.1-A.3 and

A.5-A.6 hold. Then for any real sequence {xT } and scalar η > 0 ,

lim inf
T→∞

inf
(γ,F )∈H0

[
Pr F (T̂T (γ) ≤ xT + η)− Pr(T̄ apprT (γ) ≤ xT )

]
≥ 0 and

lim sup
T→∞

sup
(γ,F )∈H0

[
Pr F (T̂T (γ) ≤ xT )− Pr(T̄ apprT (γ) ≤ xT + η)

]
≤ 0.

Theorem C.1 is a key step in the proof of Theorem 1 and is proved in the next subsection.

The remaining proof of Theorem 1 is given in the subsection after that.

C.1 Proof of Theorem C.1

The following lemma is used in the proof of Theorem C.1. It is a portmanteau theorem

for uniform weak approximation, which is an extension of the portmanteau theorem for

(pointwise) weak convergence in Chapter 1.3 of van der Vaart and Wellner (1996). Let (D, d)

be a metric space and let BL1 denote the set of all real functions on D with a Liptschiz

norm bounded by one. Let E∗ and E∗ denote outer and inner expectations respectively and

Pr∗ and Pr∗ denote outer and inner probabilities.

Lemma C.1. (a) Let (Ω,B) be a measurable space. Let {X(1)
T : Ω→ D} and {X(2)

T : Ω→ D}
be two sequences of mappings. Let P be a set of probability measures defined on (Ω,B).

Suppose that supP∈P supf∈BL1
|E∗P f(X

(1)
T ) − E∗,P f(X

(2)
T )| → 0. Then for any open set

G0 ⊆ D and closed set G1 ⊂ G0, we have

lim inf
T→∞

inf
P

[
Pr ∗,P (X

(1)
T ∈ G0)− Pr ∗P (X

(2)
T ∈ G1)

]
≥ 0 and

(b) Let (Ω,B) be a product space: (Ω,B) = (Ω1 × Ω2, σ(B1 × B2)). Let P1 be a set

of probability measures defined on (Ω1,B1) and P2 be a probability measure on (Ω2,B2).

Suppose that supP1∈P1
Pr ∗P1

(supf∈BL1
|E∗P2

f(X
(1)
T ) − E∗,P2f(X

(2)
T )| > ε) → 0 for all ε > 0.
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Then for any open set G0 ⊆ D and closed set G0 ⊂ G1, we have for any ε > 0,

lim sup
T→∞

sup
P1∈P1

Pr ∗P1
(Pr ∗P2

(X
(1)
T ∈ G1)− Pr ∗,P2(X

(2)
T ∈ G0) > ε) = 0.

Proof of Lemma C.1. (a) We first show that there is a Liptschiz continuous function sand-

wiched by 1(x ∈ G0) and 1(x ∈ G1). Let fa(x) = (a · d(x,Gc0)) ∧ 1, where Gc0 is the

complement of G0. Then fa is a Liptschitz function and fa(x) ≤ 1(x ∈ G0) for any a > 0.

Because G1 is a closed subset of G0, infx∈G1 d(x,Gc0) > c for some c > 0. Let a = c−1 + 1.

Then fa(x) ≥ 1(x ∈ G1). Thus, the function fa(x) is sandwiched between 1(x ∈ G0) and

1(x ∈ F1). Equivalently,

a−11(x ∈ G1) ≤ a−1fa(x) ≤ a−11(x ∈ G0), ∀x ∈ D. (C.2)

By definition, a−1fa(x) ∈ BL1. Using this fact and (C.2), we have

a−1 lim inf
T→∞

inf
P∈P

[
Pr ∗,P (X

(1)
T ∈ G0)− Pr ∗P (X

(2)
T ∈ G1)

]
= lim inf

T→∞
inf
P∈P

[a−1 Pr ∗,P (X
(1)
T ∈ G0)− E∗,Pa−1fa(X

(1)
T )+

E∗,Pa
−1fa(X

(1)
T )− E∗Pa−1fa(X

(2)
T ) + E∗Pa

−1fa(X
(2)
T )− a−1 Pr ∗P (X

(2)
T ∈ G1)]

≥ lim inf
T→∞

inf
P∈P

[
E∗,Pa

−1fa(X
(1)
T )− E∗Pa−1fa(X

(2)
T )
]

= 0. (C.3)

Therefore, part (a) is established.

(b) Use the same a and fa(x) as above, we have

Pr ∗P2
(X

(1)
T ∈ G1)− Pr ∗,P2(X

(2)
T ∈ G0) ≤ a

[
E∗P2

a−1fa(X
(1)
T )− E∗,P2a

−1fa(X
(2)
T )
]

≤ a sup
f∈BL1

|E∗,P2f(X
(1)
T )− E∗P2

f(X
(2)
T )|. (C.4)

This implies part (b).

Proof of Theorem C.1. We only need to show the first inequality because the second one

follows from the same arguments with T̂T (γ) and T̄ apprT (γ) flipped.

The proof consists of four steps. In the first step, we show that the truncation of G has

asymptotically negligible effect: for all ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F (|T̂T (γ)− T̄T (γ)| > ε) = 0, (C.5)
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where T̄T (γ) is the same as T̂T (γ) except that the integral is over G instead of GT . In the

second step, we define a bounded version of T̄T (γ): T̄T (γ;B1, B2) and a bounded version of

T̄ apprT (γ): T̄ apprT (γ;B1, B2) and show that for any B1, B2 > 0 and any real sequence {xT },

lim inf
T→∞

inf
(γ,F )∈H0

[
Pr F (T̄T (γ;B1, B2) ≤ xT + η)− Pr(T̄ apprT (γ;B1, B2) ≤ xT )

]
≥ 0. (C.6)

In the second step, we show that T̄T (γ;B1, B2) is asymptotically close in distribution to

T̄T (γ) for large enough B1, B2: for any ε > 0, there exists B1,ε and B2,ε such that

lim sup
T→∞

sup
(γ,F )∈H0

Pr F (T̄T (γ;B1,ε, B2,ε) 6= T̄T (γ)) < ε. (C.7)

In the third step, we show that T̄ apprT (γ;B1, B2) is asymptotically close in distribution to

T̄ apprT (γ) for large enough B1, B2: for any ε > 0, there exists B1,ε and B2,ε such that

lim sup
T→∞

sup
(γ,F )∈H0

Pr F (T̄ apprT (γ;B1,ε, B2,ε) 6= T̄ apprT (γ)) < ε. (C.8)

The four steps combined proves the Theorem. Now we give detailed arguments of the four

steps.

STEP 1. First we show a property of the function S that is useful throughout all steps:

for any (m1,Σ1) and (m2,Σ2) ∈ Rk ×Ψξ,

|S(m1,Σ1)− S(m2,Σ2)| ≤ C2 × (S(m2,Σ2) + 1)(∆ +
√

∆2 + 8∆)/2, (C.9)

for the ∆ and C in Assumption A.6(b). Let ∆S = |S(m1,Σ1) − S(m2,Σ2)|. Assumption

A.6(b) implies that

∆2
S ≤ C2 × (S(m1,Σ1) + S(m2,Σ2))(S(m2,Σ2) + 1)∆

≤ C2 × (∆S + 2S(m2,Σ2))(S(m2,Σ2) + 1)∆. (C.10)

Solve the quadratic inequality for ∆S , we have

∆S ≤
C2

2
× [(S(m2,Σ2) + 1)∆ +

√
(S(m2,Σ2) + 1)2∆2 + 8S(m2,Σ2)(S(m2,Σ2) + 1)∆]

≤ C2

2
× (S(m2,Σ2) + 1)(∆ +

√
∆2 + 8∆) (C.11)

This shows (C.9).
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Observe that

0 ≤ T̄T (γ)− T̂T (γ)

≤ sup
θ∈Γ−1(γ)

ˆ
G/GT

S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))dµ(g)

≤ sup
θ∈Γ−1(γ)

ˆ
G/GT

S(
√
TρF (θ, g),Σι

F (θ, g))dµ(g)+

sup
θ∈Γ−1(γ)

ˆ
G/GT

|S(
√
TρF (θ, g),Σι

F (θ, g))− S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))|dµ(g)

= o(1) + sup
θ∈Γ−1(γ)

ˆ
G/GT

|S(
√
TρF (θ, g),Σι

F (θ, g))− S(
√
T ρ̄T (θ, g), Σ̂ι

T (θ, g))|dµ(g)

≤ o(1) + 2−1 sup
θ∈Γ−1(γ)

ˆ
G/GT

C2 × (S(
√
TρF (θ, g),Σι

F (θ, g)) + 1)dµ(g)×

sup
θ∈Γ−1(γ),g∈G/GT

c(||ν̂T (θ, g)||2 + ||vech(Σι
F (θ, g)− Σ̂ι

T (θ, g))||)

= o(1) + o(1)× c(Op(1))

= op(1), (C.12)

where c(x) = x +
√
x2 + 8x, the third inequality holds by the triangle inequality, the first

equality holds by Assumption A.5(b), the fourth inequality holds by (C.9) and the second

equality holds by Assumptions A.5(a)-(b) and A.2(c)-(d). The o(1), op(1) and Op(1) are

uniform over (γ, F ) ∈ H. Thus, (C.5) is shown. STEP 2. We define the bounded versions

of T̄T (γ) as

T̄T (γ;B1, B2) = min
θ∈Θ0,F (γ)

min
λ∈Λ̄

B2
T (θ,γ)ˆ

G
S(ν̂B1

T (θ + λ/
√
T , g) +GF (θ̃T , g)λ+

√
TρF (θ, g), Σ̂n(θ + λ/

√
T , g))dµ(g)

(C.13)

where Λ̄B2
T (θ, γ) = {λ ∈ ΛT (θ, γ) : TQF (θ+λ/

√
T ) ≤ B2}, ν̂B1

T (·, ·) = max{−B1,min{B1, ν̂T (·, ·)}}
and θ̃T is a value lying on the line segment joining θ and θ + λ/

√
T satisfying the mean

value expansion:

ρF (θ + λ/
√
T , g) = ρF (θ, g) +GF (θ̃T , g)λ/

√
T . (C.14)
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Define the bounded version of T̄ apprT (γ) as

T̄ apprT (γ;B1, B2) = (C.15)

min
θ∈Θ0,F (γ)

min
λ∈Λ̄

B2
T (θ,γ)

ˆ
G
S(νB1

F (θ, g) +GF (θ, g)λ+
√
TρF (θ, g),ΣF (θ, g))dµ(g),

where νB1
F (·, ·) = max{−B1,min{B1, νF (·, ·)}}.

First we show a useful result: for all (γ, F ) ∈ H0 and λ ∈ Λ̄B2
T (θ, γ) and some constant

C̄ > 0,

||λ|| ≤ C̄ × T (δ1−2)/(2δ1). (C.16)

This is shown by observing, for all (γ, F ) ∈ H0 and λ ∈ Λ̄B2
T (θ, γ),

B2 >TQF (θ + λ/
√
T )

≥C · ((T × d(θ + λ/
√
T ,Θ0,F (γ))δ1) ∧ (c× T )). (C.17)

The second inequality holds by Assumption (A.3)(b). Because c × T is eventually greater

than B2 as T →∞, we have for large enough T ,

B2 ≥ C × T × (||λ||/
√
T )δ1 . (C.18)

This implies (C.16). Equation (C.16) implies two results:

(1) sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ)

sup
λ∈Λ̄

B2
T (θ,γ)

||λ||/
√
T ≤ O(T−1/δ1) = o(1)

(2) sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ)

sup
λ∈Λ̄

B2
T (θ,γ)

sup
g∈G
||GF (θ +O(||λ||)/

√
T , g)λ−GF (θ, g)λ||

≤ O(1)× ||λ||δ2+1T−δ2/2 ≤ O(T (δ1−2(δ2+1))/(2δ1)) = o(1). (C.19)

The second result holds by Assumption A.2(e).

Define an intermediate statistic

T̄medT (γ;B1, B2) = min
θ∈Θ0,F (γ)

min
λ∈Λ̄

B2
T (θ,γ)ˆ

G
S(ν̂B1

T (θ, g) +GF (θ, g)λ+
√
TρF (θ, g),Σι

F (θ, g))dµ(g). (C.20)

Then T̄medT (γ;B1, B2) and T̄ apprT (γ;B1, B2) are respectively the following functional evalu-
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ated at νF (·, ·) and ν̂T (·, ·):

h(ν) = min
θ∈Θ0,F (γ)

min
λ∈Λ̄

B2
T (θ,γ)

ˆ
G
S(νB1(θ, ·) +GF (θ, ·)λ+

√
TρF (θ, ·),Σι

F (θ, ·))dµ. (C.21)

The functional h(ν) is uniformly bounded for all large enough T because for any fixed

θ ∈ Θ0,F (γ) and λ ∈ Λ̄B2
T (θ, γ),

h(ν) ≤ 2

ˆ
G
S(GF (θ, ·)λ+

√
TρF (θ, ·),Σι

F (θ, ·))dµ+ 2

ˆ
G
S(νB1(θ, ·),ΣF (θ, ·))dµ

≤ 2 sup
Σ∈Ψ

S(−B11k,Σ) + 2

ˆ
G
S(GF (θ, ·)λ+

√
TρF (θ, ·),Σι

F (θ, ·))dµ

≤ 2 sup
Σ∈Ψ

S(−B11k,Σ) + 2T ×QF (θ + λ/
√
T )+

C2 × (T ×QF (θ + λ/
√
T ) + 1) sup

g∈G
(∆T (g) +

√
∆T (g)2 + 8∆T (g))

≤ 2 sup
Σ∈Ψ

S(−B11k,Σ) + 2B2 + C2B2 × o(1), (C.22)

where ∆T (g) = ||GF (θ, g)λ+
√
TρF (θ, g)−

√
TρF (θT , g)||2 + ||vech(Σι

F (θ, g) + Σι
F (θT , g))||

and θT = θ + λ/
√
T . The first inequality holds by Assumptions A.6(e)-(f), the second

inequality holds by Assumptions A.2(f) and Assumptions A.6(c), the third inequality holds

by (C.9) and the last inequality holds by (C.19).

The functional h(ν) is Lipschitz continuous for all large enough T with respect to the

uniform metric because

|h(ν1)− h(ν2)| ≤ 2C sup
θ∈Θ0,F (γ)

sup
λ∈Λ̄

B2
T (θ,γ)

sup
g∈G
||ν1(θ, g)− ν2(θ, g)||(1 + h(ν1) + 2h(ν2))

≤ C̄ sup
θ∈Γ−1(γ),g∈G

||ν1(θ, g)− ν2(θ, g)||, (C.23)

where C̄ is any constant such that C̄ > 2C × (6 supΣ∈Ψ S(−B11k,Σ) + 6B2), the first

inequality holds by Assumption A.6(b) and the second holds by (C.22).

Therefore, for any f ∈ BL1 and any real sequence {xT }, the composite function f ◦
(C̄−1h(·) + xT ) ∈ BL1. By AssumptionA.2(c) and the uniform Donsker theorem, we have

lim sup
T→∞

sup
(γ,F )∈H0

sup
f∈BL1

|EF f(T̄medT (γ;B1, B2)+xT )−Ef(T̄ apprT (γ;B1, B2)+xT )| = 0. (C.24)
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This combined with Lemma C.1(a) (with G0 = (−∞, η) and G1 = (−∞, 0]) gives

lim inf
T→∞

inf
(γ,F )∈H0

[
Pr F (T̄medT (γ;B1, B2) ≤ xT + η)− Pr(T̄ apprT (γ;B1, B2) ≤ xT )

]
≥ 0.

(C.25)

Now it is left to show that T̄medT (γ;B1, B2) and T̄T (γ;B1, B2) are close. First, we have

C2 × (S(m2,Σ2) + 1)(∆ +
√

∆2 + 8∆)/2,

|T̄T (γ;B1, B2)− T̄medT (γ;B1, B2)|

≤ sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ)

ˆ
G
|S(ν̂B1

T (θ + λ/
√
T , g) +GF (θ̃T , g)λ+

√
TρF (θ, g), Σ̂ι

T (θ + λ/
√
T , g))

− S(ν̂B1
T (θ, g) +GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))|dµ(g)

≤C2 × sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ)

max
g∈G

c(∆T (θ, λ, g))×
ˆ
G
(1 +MT (θ, λ, g))dµ(g), (C.26)

where c(x) = (x+
√
x2 + 8x)/2, C is the constant in (C.9),

∆T (θ, λ, g) =||ν̂B1
T (θ + λ/

√
T , g)− ν̂B1

T (θ, g) +GF (θ̃T , g)λ−GF (θ, g)λ||2+

||vech(Σ̂T (θ + λ/
√
T , g)− ΣF (θ, g))|| and

MT (θ, λ, g) =S(ν̂B1
T (θ, g) +GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g)). (C.27)

Below we show that for any ε > 0, and some universal constant C̄ > 0,

sup
(γ,F )∈H0

Pr F

 sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ),g∈G

∆T (θ, λ, g) > ε

→ 0 and (C.28)

sup
T

sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ)

ˆ
G
MT (θ, λ, g)dµ(g) < C̄. (C.29)

Once (C.28) and (C.29) are shown, it is immediate that for any ε > 0,

sup
(γ,F )∈H0

Pr F

(
|T̄T (γ;B1, B2)− T̄medT (γ;B1, B2)| > ε

)
→ 0. (C.30)

This combined with (C.25) shows (C.6).

Now we show (C.28) and (C.29). The convergence result (C.28) is implied by the
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following results: for any ε > 0,

sup
(γ,F )∈H0

Pr F

 sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ),g∈G

||ν̂B1
T (θ + λ/

√
T , g)− ν̂B1

T (θ, g)|| > ε

→ 0

sup
(γ,F )∈H0

sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ),g∈G

||GF (θ̃T , g)λ−GF (θ, g)λ|| → 0 and

sup
(γ,F )∈H0

Pr F

 sup
θ∈Θ0,F (γ),λ∈Λ̄

B2
T (θ,γ),g∈G

||vech(Σ̂T (θ + λ/
√
T , g)− ΣF (θ, g))|| > ε

→ 0.

(C.31)

The first result in the above display holds by the first result in equation (C.19) and the

uniform stochastic equicontinuity of the empirical process ν̂T (θ, g) : Θ × G → Rdm . The

uniform equicontinuity is implied by Assumptions A.2(b) and (c). The second result in the

above display holds by the second result in (C.19). The third result in (C.31) holds by

Assumption A.2(d) and (f).

Result (C.29) is implied by: for any θ ∈ Θ0,F (γ) and λ ∈ Λ̄B2
T (θ, γ),

ˆ
G
MT (θ, λ, g)dµ(g)

≤2

ˆ
G
S(ν̂B1

T θ, g),Σι
F (θ, g))dµ(g) + 2

ˆ
G
S(GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))dµ(g)

≤ sup
Σ∈Ψ

S(−B11k,Σ) + 2

ˆ
G
S(GF (θ, g)λ+

√
TρF (θ, g),Σι

F (θ, g))dµ(g)

≤ sup
Σ∈Ψ

S(−B11k,Σ) + 2B2 + C2B2 × o(1), (C.32)

where the first inequality holds by Assumptions A.6(f), the second inequality holds by

Assumption A.6(c) and the last inequality holds by the second and third inequality in

(C.22) and the o(1) is uniform over (θ, λ).

STEP 3. In order to show (C.7), first extend the definition of T̄T (γ;B1, B2) from Step

1 to allow B1 and B2 to take the value ∞ and observe that T̄T (γ;∞,∞) = T̄T (γ).

Assumptions A.2(b) and (c) imply that for any ε > 0, there exists B1,ε large enough

such that

lim sup
T→∞

sup
(γ,F )∈H0

Pr F

(
sup

θ∈Θ,g∈G
||ν̂T (θ, g)|| > B1,ε

)
< ε. (C.33)

Therefore we have for all B2,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F
(
T̄T (γ,∞, B2) 6= T̄T (γ;B1,ε, B2)

)
< ε. (C.34)
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To show that T̄ T (γ) and T̄T (γ;∞, B2) are close for B2 large enough, first observe that:

T̄ T (γ) ≤ sup
θ∈Θ0,F (γ)

ˆ
G
S(ν̂T (θ, g) +

√
TρF (θ, g), Σ̂ι

T (θ, g))dµ(g)

≤ sup
θ∈Θ0,F (γ)

ˆ
G
S(ν̂T (θ, g), Σ̂ι

T (θ, g))dµ(g)

= Op(1) (C.35)

where the first inequality holds because 0 ∈ ΛT (θ, γ), the second inequality holds because

ρF (θ, g) ≥ 0 for θ ∈ Θ0,F (γ) and by Assumption A.6(c), the equality holds by Assumption

A.6(a)-(c) and Assumptions A.2 (b), (c) (d) and (f). The Op(1) is uniform over (γ, F ) ∈ H0.

For any T , γ, B2, if T̄ T (γ) 6= T̄T (γ;∞, B2), then there must be a θ∗ ∈ Γ−1(γ) such that

T ×QF (θ∗) > B2 and

ˆ
G
S(ν̂T (θ∗, g) +

√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g) < Op(1). (C.36)

But

ˆ
G
S(ν̂T (θ∗, g) +

√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)

≥2−1

ˆ
G
S(
√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)−
ˆ
G
S(−ν̂T (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)

≥2−1

ˆ
G
S(
√
TρF (θ∗, g), Σ̂ι

T (θ∗, g))dµ(g)−Op(1)

≥2−1{TQF (θ∗)−
ˆ
G
|S(
√
TρF (θ∗, ·), Σ̂ι

T (θ∗, ·))− S(
√
TρF (θ∗, ·),Σι

F (θ∗, ·))|dµ} −Op(1)

≥2−1{TQF (θ∗)− C2 sup
g∈G

c(||vech(Σ̂ι
T (θ∗, g)− Σι

F (θ∗, g))||)× (1 + TQF (θ∗))} −Op(1)

=B2/2− o(1)− op(1)× C2 ×B2/4−Op(1), (C.37)

where c(x) = (x+
√
x2 + 8x) and C is the constant in (C.9). The first inequality holds by

Assumptions A.6(e)-(f), the second inequality holds by Assumption A.6(c) and Assumptions

A.2(c)-(d) and (f), the third inequality holds by the triangle inequality, the fourth inequality

holds by (C.9) and the equality holds by Assumption A.2(d). The terms o(1), op(1) and

Op(1) terms are uniform over θ∗ ∈ Γ−1(γ) and (γ, F ) ∈ H0.
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Then

sup
(γ,F )∈H0

Pr F

(
T̂ T (γ) 6= T̄T (γ;∞, B2)

)
≤ sup

(γ,F )∈H0

Pr F (2−1(1− op(1))×B2 − o(1)−Op(1) ≤ Op(1))

= sup
(γ,F )∈H0

Pr F (Op(1) ≥ B2) , (C.38)

where the first inequality holds by (C.36) and (C.37). Then for any ε, there exists B2,ε such

that

lim
T→∞

sup
(γ,F )∈H0

Pr F (T̂T (γ) 6= T̄T (γ;∞, B2,ε)) < ε. (C.39)

Combining this with (C.34), we have (C.7).

STEP 4. In order to show (C.7), first extend the definition of T̄ apprT (γ;B1, B2) from

Step 1 to allow B1 and B2 to take the value∞ and observe that T̄ apprT (γ;∞,∞) = T̄ apprT (γ).

By the same arguments as those for (C.34), for any ε and B2, there exists B1,ε large

enough so that

lim sup
n→∞

sup
(γ,F )∈H0

Pr F
(
T̄ apprT (γ;∞, B2) 6= T̄ apprT (γ;B1,ε, B2)

)
< ε. (C.40)

Also by the same reasons as those for (C.35), we have

T̄ apprT (γ) ≤ sup
θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g), (C.41)

where the rhs is a real-valued random variable.

For any T and B2, if T̄ apprT (γ) 6= T̄ apprT (γ;∞, B2,ε), then there must be a θ∗ ∈ Θ0,F (γ),

a λ∗∗ ∈ {λ ∈ ΛT (θ∗, γ) : T ×QF (θ∗ + λ/
√
T ) > B2} such that

I(λ∗∗) < sup
θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g), (C.42)

where I(λ) =
´
G S(νF (θ∗, g) + GF (θ∗, g)λ +

√
TρF (θ∗, g),Σι

F (θ∗, g))dµ(g). Next we show

that there exists a λ∗ such that

λ∗ ∈ {λ ∈ ΛT (θ∗, γ) : T ×QF (θ∗ + λ/
√
T ) ∈ (B2, 2B2]} and

I(λ∗) < sup
θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g). (C.43)

If T × QF (θ∗ + λ∗∗/
√
T ) ∈ (B2, 2B2], then we are done. If T × QF (θ∗ + λ∗∗/

√
T ) > 2B2,

there must be a a∗ ∈ (0, 1) such that T×QF (θ∗+a∗λ∗∗/
√
T ) ∈ (B2, 2B2] because TQF (θ∗+
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0× λ∗∗/
√
T ) = 0 and TQF (θ∗ + aλ∗∗/

√
T ) is continuous in a (by Assumptions A.2(e) and

A.6(a)). By Assumption A.6(f), I(λ) is convex. Thus I(a∗λ∗∗) ≤ a∗I(λ∗∗)+(1−a∗)I(0). For

the same arguments as those for (C.35), I(0) ≤ supθ∈Θ0,F (γ)

´
G S(νF (θ, g),Σι

F (θ, g))dµ(g)..

Thus, I(a∗λ∗∗) < supΣ∈Ψξ S(−B1,ε1k,Σ). Assumption (A.1)(c) and the definition of ΛT (θ, γ)

guarantee that a∗λ∗∗ ∈ ΛT (θ∗, γ). Therefore, λ∗ = a∗λ∗∗ satisfies (C.43).

Similar to (C.19) we have

(1) ||λ∗||/
√
T ≤ B2 × 2C × T−1/δ1 = B2 × o(1)

(2) sup
g∈G
||GF (θ∗ +O(||λ∗||)/

√
T , g)λ∗ −GF (θ∗, g)λ∗||

≤ O(1)×B(δ2+1)/δ1
2 ||λ||δ2+1T−δ2/2 = B

(δ2+1)/δ1
2 o(1), (C.44)

where the o(1) terms do not depend on B2. Then,

I(λ∗) ≥ 2−1

ˆ
G
S(GF (θ∗, g)λ∗ +

√
TρF (θ∗, g),Σι

F (θ∗, g))dµ(g)−
ˆ
G
S(−νF (θ∗, g),Σι

F (θ∗, g))dµ(g)

≥ TQF (θ∗ + λ∗/
√
T )/2− C2 × (TQF (θ∗ + λ∗/

√
T ) + 1)× c(∆T )/4 +Op(1)

= TQF (θ∗ + λ∗/
√
T )/2− C2 × (2B2 + 1)× c(∆T )/4 +Op(1), (C.45)

where the Op(1) term is uniform over (γ, F ) ∈ H0, c(x) = (x+
√
x2 + 8x) and

∆T = ||GF (θ∗, g)λ∗ +
√
TρF (θ∗, g)−

√
TρF (θ∗ + λ∗/

√
T , g)||2

+ ||vech(Σι
F (θ∗ + λ∗/

√
T , g)− Σι

F (θ∗, g))||. (C.46)

The first inequality in (C.45) holds by Assumptions A.6(e)-(f), the second inequality holds

by (C.9) and the equality holds by (C.43). By (C.44) and Assumption A.2(f), for any fixed

B2, limT→∞∆T = 0. Therefore, for each fixed B2,

I(λ∗) ≥ TQF (θ∗ + λ∗/
√
T )/2−Op(1) ≥ B2/2−Op(1). (C.47)
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Thus

sup
(γ,F )∈H0

Pr(T̄ apprT (γ) 6= T̄ apprT (γ;∞, B2))

≤ sup
(γ,F )∈H0

Pr

(
sup

θ∈Θ0,F (γ)

ˆ
G
S(νF (θ, g),Σι

F (θ, g))dµ(g) ≥ B2/2−Op(1)

)
= sup

(γ,F )∈H0

Pr(Op(1) ≥ B2). (C.48)

For any ε > 0, there exists B2,ε large enough so that limT→∞ sup(γ,F )∈H0
Pr(Op(1) ≥ B2) <

ε. Thus,

lim
T→∞

sup
(γ,F )∈H0

Pr(T̄ apprT (γ) 6= T̄ apprT (γ;∞, B2,ε) < ε. (C.49)

Combining this with (C.40), we have (C.40).

C.2 Proof of Theorem 1

The following lemma is used in the proof of Theorem 1. It shows the convergence of

the bootstrap empirical process ν̂∗T (θ, g). Let WT,t be the number of times that the tth

observation appearing in a bootstrap sample. Then (WT,1, ...,WT,T ) is a random draw

from a multinomial distribution with parameters T and (T−1, ..., T−1), and ν̂∗T (θ, g) can be

written as

ν̂∗T (θ, g) = T−1/2
T∑
t=1

(WT,t − 1)ρ(wt, θ, g). (C.50)

In the lemma, the subscripts F and W for E and Pr signify the fact that the expectation and

the probabilities are taken with respect to the randomness in the data and the randomness

in {WT,t} respectively.

Lemma C.2. Suppose that Assumption A.2 holds. Then for any ε > 0,

(a)lim supT→∞ sup(γ,F )∈H Pr ∗F (supf∈BL1
|EW f(ν̂∗T (·, ·))− Ef(νF (·, ·))| > ε) = 0,

(b) there exists Bε large enough such that

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
PrW

(
sup

θ∈Γ−1(γ),g∈G
||ν̂∗T (θ, g)|| > Bε

)
> ε

)
= 0, and

(c) there exists δε small enough such that

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
PrW

(
sup
g∈G

sup
||θ(1)−θ(2)||≤δε

||ν̂∗T (θ(1), g)− ν̂∗T (θ(2), g)|| > ε

)
> ε

)
= 0.
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Proof of Lemma C.2. (a) Part (a) is proved using a combination of the arguments in Theo-

rem 2.9.6 and Theorem 3.6.1 in van der Vaart and Wellner (1996). Take a Poisson number

NT with mean T and independent from the original sample. Then {WNT ,1, ...,WNT ,T } are

i.i.d. Poisson variables with mean one. Let the Poissonized version of ν̂∗T (θ, g) be

ν̂poiT (θ, g) = T−1/2
T∑
t=1

(WNT ,t − 1)ρ(wt, θ, g). (C.51)

Theorem 2.9.6 in van der Vaart and Wellner (1996) is a multiplier central limit theorem that

shows that if {ρ(wt, θ, g) : (θ, g) ∈ Θ × G} is F -Donsker and pre-Gaussian, then ν̂poiT (θ, g)

converges weakly to νF (θ, g) conditional on the data in outer probability. The arguments

of Theorem 2.9.6 remain valid if we strengthen the F -Donsker and pre-Gaussian condition

to the uniform Donsker and pre-Gaussian condition of Assumption A.2(c) and strengthen

the conclusion to uniform weak convergence:

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
sup
f∈BL1

|EW f(ν̂poiT (·, ·))− Ef(νF (·, ·))| > ε

)
= 0, (C.52)

In particular, the extension to the uniform versions of the first and the third displays in the

proof of Theorem 2.9.6 in van der Vaart and Wellner (1996) is straightforward. To extend

the second display, we only need to replace Lemma 2.9.5 with Proposition A.5.2 – a uniform

central limit theorem for finite dimensional vectors.

Theorem 3.6.1 in van der Vaart and Wellner (1996) shows that, under a fixed (γ, F ),

the bounded Lipschitz distance between ν̂poiT (θ, g) and ν̂∗T (θ, g) converge to zero conditional

on (outer) almost all realizations of the data. The arguments remain valid if we strengthen

the Glivenko-Cantelli assumption used there to uniform Glivenko-Cantelli (which is implied

by Assumption A.2(c)) and strengthen the conclusion to: for all ε > 0

lim sup
T→∞

sup
(γ,F )∈H

Pr ∗F

(
sup
f∈BL1

|EW f(ν̂poiT (·, ·))− EW f(ν̂∗T (·, ·))| > ε

)
= 0, (C.53)

Equations (C.52) and (C.53) together imply part (a).

(b) Part (b) is implied by part (a), Lemma C.1(b) and the uniform pre-Gaussianity

assumption (Assumption A.2(c)). When applying Lemma C.1(b), consider X
(1)
T = ν̂∗T ,

X
(2)
T = νF , G1 = {ν : supθ,g ||ν(θ, g)|| ≥ Bε}, and G2 = {ν : supθ,g ||ν(θ, g)|| > Bε − 1}

where Bε satisfies:

sup
(γ,F )∈H

Pr

(
sup

θ∈Θ,g∈G
||νF (θ, g)|| > Bε − 1

)
< ε/2. (C.54)
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Such a Bε exists because {ρ(wt, θ, g) : (θ, g) ∈ Θ × G} is uniformly pre-Gaussian by As-

sumption A.2(d).

(c) Part (c) is implied by part (a), Lemma C.1(b) and the uniform pre-Gaussianity

assumption (Assumption A.2(c)). When applying Lemma C.1(b), consider X
(1)
T = ν̂∗T ,

X
(2)
T = νF , G1 = {ν : sup||θ(1)−θ(2)||≤∆ε,g

||ν(θ(1), g) − ν(θ(2), g)|| ≥ ε}, and G0 = {ν :

sup||θ(1)−θ(2)||≤∆ε,g
||ν(θ(1), g)− ν(θ(2), g)|| > ε/2}, where ∆ε satisfies:

sup
(γ,F )∈H

Pr

(
sup

||θ(2)−θ(2)||≤∆ε,g

||νF (θ(1), g)− νF (θ(2), g)|| > ε/2

)
< ε/2. (C.55)

Such a ∆ε exists because {ρ(wt, θ, g) : (θ, g) ∈ Θ× G} is uniformly pre-Gaussian.

Proof of Theorem 1. (a) Let qapprbT
(γ, p) denotes the p quantile of T̄ apprbT

(γ). Let η2 = η∗/3.

Below we show that,

lim sup
T→∞

sup
(γ,F )∈H0

PrF,sub(c
sub
T (γ, p) ≤ qapprbT

(γ, p) + η2) = 0. (C.56)

where Pr ∗F,sub signifies the fact that there are two sources of randomness in csubT (γ, p) one

from the original sampling and the other from the subsampling. Once (C.56) is established,

we have,

lim inf
T→∞

inf
(γ,F )∈H0

PrF,sub

(
T̂T (γ) ≤ csubT (γ, p)

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

PrF

(
T̂T (γ) ≤ qapprbT

(γ, p) + η2

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

[
PrF

(
T̂T (γ) ≤ qapprbT

(γ, p) + η2

)
− Pr

(
T̄ apprT (γ) ≤ qapprbT

(γ, p)
)]

+ lim inf
T→∞

inf
(γ,F )∈H0

[
Pr
(
T̄ apprT (γ) ≤ qapprbT

(γ, p)
)
− Pr

(
T̄ apprbT

(γ) ≤ qapprbT
(γ, p)

)]
+ lim inf

T→∞
inf

(γ,F )∈H0

Pr
(
T̄ apprbT

(γ) ≤ qapprbT
(γ, p)

)
(C.57)

≥ p,

where the first inequality holds by (C.56). The third inequality holds because the first two

lim infs after the second inequality are greater than or equal to zero and the third is greater

than or equal to p. The first lim inf is greater than or equal to zero by Theorem C.1. The

second lim inf is greater than or equal to zero T̄ apprbT
(γ) ≥ T̄ apprT (γ) for any γ and T which

holds because
√
T ≥

√
bT and ΛbT (θ, γ) ⊆ ΛT (θ, γ) for large enough T by Assumptions
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A.1(c) and A.7(c).

Now it is left to show (C.56). In order to show (C.56), we first show that the c.d.f. of

T̄ apprbT
(γ) is close to the following empirical distribution function:

L̂T,bT (x; γ) = S−1
T

ST∑
s=1

1
(
T̂ sT,bT (γ) ≤ x

)
. (C.58)

Define an intermediate quantity first:

L̃T,bT (x; γ) = q−1
T

qT∑
l=1

1
(
T̃ lT,bT (γ) ≤ x

)
, (C.59)

where qT = ( TbT ) and (T̃ lT,bT (γ))qTl=1 are the subsample statistics computed using all qT

possible subsamples of size bT of the original sample. Conditional on the original sample,

(T̂ sT,bT (γ))STs=1 is ST i.i.d. draws from L̃T,bT (·; γ). By the uniform Glivenko-Cantelli theorem,

for any ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,sub

(
sup
x∈R

∣∣∣L̃T,bT (x; γ)− L̂T,bT (x; γ)
∣∣∣ > ε

)
= 0 (C.60)

It is implied by a Hoeffding’s inequality (Theorem A on page 201 of Serfling (1980)) for

U-statistics that for any real sequence {xT }, and ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

PrF

(
L̃T,bT (xT ; γ)− PrF

(
T̃ lT,bT (γ) ≤ xT

)
> ε
)

= 0. (C.61)

Equations (C.60) and (C.61) imply that, for any real sequence {xT } and ε > 0,

lim sup
T→∞

sup
(γ,F )∈H0

PrF,sub

(
L̂T,bT (xT ; γ)− PrF

(
T̃ lT,bT (γ) ≤ xT

)
> ε
)

= 0. (C.62)

Apply Theorem C.1 on the subsample statistic T̃ lT,bT (γ), and we have for any ε > 0 and

any real sequence {xT },

lim sup
T→∞

sup
(γ,F )∈H0

[
PrF

(
T̃ lT,bT (γ) ≤ xT − ε

)
− Pr

(
T̄ apprbT

(γ) ≤ xT
)]

< 0. (C.63)

Equations (C.62) and (C.63) imply that for any real sequence {xT },

sup
(γ,F )∈H0

PrF,sub

(
L̂T,bT (xT ; γ) >

(
η2 + Pr

(
T̄ apprbT

(γ) ≤ xT + η2

)))
→ 0. (C.64)
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Plug xT = qapprbT
(γ, p)− 2η2 into the above equation and we have:

lim sup
T→∞

sup
(γ,F )∈H0

Pr∗F,sub

(
L̂T,bT (qapprbT

(γ, p)− 2η2; γ) > η2 + p
)

= 0. (C.65)

However, by the definition of csubT (γ, p), L̂T,bT (csubT (γ, p)−η∗; γ) ≥ p+η∗ > η2 +p. Therefore

lim sup
n→∞

sup
(γ,F )∈H0

Pr∗F,sub

(
L̂T,bT (qapprbT

(γ, p)− 2η2; γ) ≥ L̂T,bT (csubT (γ, p)− η∗; γ)
)

=0, (C.66)

which implies (C.56).

(b) Let qbtκT (γ, p) be the p quantile of T̄ apprκT (γ) conditional on the original sample. Below

we show that for η2 = η∗/3,

lim sup
T→∞

sup
(γ,F )∈H0

PrF,W (cbtT (γ, p) < qbtκT (γ, p) + η2) = 0. (C.67)

where Pr F,W signifies the fact that there are two sources of randomness in cbtT (γ, p), that from

the original sampling and that from the bootstrap sampling. Once (C.67) is established,

we have,

lim inf
T→∞

inf
(γ,F )∈H0

PrF,W

(
T̂T (γ) ≤ cbtT (γ, p)

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

PrF

(
T̂T (γ) ≤ qbtκT (γ, p) + η2

)
≥ lim inf

T→∞
inf

(γ,F )∈H0

Pr
(
T̄ apprT (γ) ≤ qbtκT (γ, p)

)
− η2

≥ lim inf
T→∞

inf
(γ,F )∈H0

Pr
(
T̄ apprκT

(γ) ≤ qbtκT (γ, p)
)
− η2

= p, (C.68)

where the first inequality holds by (C.67), the second inequality holds by Theorem C.1 and

the third inequality holds because T̄ apprκT (γ) ≥ T̄ apprT (γ) for any γ and T which holds because√
T ≥ √κT and ΛκT (θ, γ) ⊆ ΛT (θ, γ) for large enough T by Assumptions A.1(c) and A.7(c).

Now we show (C.67). First, we show that the c.d.f. of T̄ apprκT (γ) is close to the following

empirical distribution:

FST (x, γ) = S−1
T

ST∑
l=1

1{T ∗T,l(γ) ≤ x}, (C.69)

where {T ∗T,1(γ), ..., T ∗T,ST (γ)} are the ST conditionally independent copies of the bootstrap

test statistics. By the uniform Glivenko-Cantelli Theorem, FSn(x, γ) is close to conditional
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c.d.f. of T ∗T (γ): for any η > 0

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W

(
sup
x∈R
|FSn(x, γ)− PrW (T ∗T (γ) ≤ x)| > η

)
= 0. (C.70)

The same arguments as those for Theorem C.1 can be followed to show that T ∗T (γ) is

close in law to T̄ apprκT (γ) in the following sense: for any real sequence {xT },

lim sup
T→∞

sup
(γ,F )∈H0

Pr F
(
PrW (T ∗T (γ) ≤ xT − η2)− Pr(T̄ apprκT

(γ) ≤ xT ) ≥ η2

)
= 0. (C.71)

When following the arguments for Theorem C.1, we simply need to observe the resemblence

between T̂T (γ) and T ∗T (γ) in the following form:

T ∗T (γ) = min
θ∈Θ0,F (γ)

min
λ∈ΛκT (θ,γ)ˆ

G
S(ν̂∗+T (θ + λ/

√
T , g) +GF (θ̃T , g)λ+

√
κTρF (θ, g), Σ̂n(θ + λ/

√
T , g))dµ(g),

(C.72)

where

ν̂∗+T (θ, g) = ν̂∗T (θ, g) + κ
1/2
T n−1/2ν̂T (θ, g), (C.73)

and use Lemma C.2 in conjunction with Assumptions A.2(c) and use Lemma C.1(b) in

place of C.1(a).

Equations (C.70) and (C.71) together imply that for any real sequence {xn},

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W
(
FST (xT − η2, γ)− Pr(T̄ apprκT

(γ) ≤ xT ) ≥ η2

)
= 0. (C.74)

Plug in xT = qapprκT (γ, p)− η2 and we have

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W
(
FST (qapprκT

(γ, p)− 2η2, γ) ≥ p+ η2

)
= 0. (C.75)

But by definition, FST (cbtT (γ, p)− η∗, γ) ≥ p+ η∗ > p+ η2. Therefore,

lim sup
T→∞

sup
(γ,F )∈H0

Pr F,W

(
FST (qapprκT

(γ, p)− 2η2, γ) ≥ FST (cbtT (γ, p)− η∗, γ)
)

= 0, (C.76)

which implies (C.67).
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